doccan安装报错ERROR: Could not find a version that satisfies the requirement tomli>=1 (from versions: n doccano
自然语言处理实战项目——好差评 应用:VOC源声分类,网上商城好差评分类。需求背景:网购东西的好坏往往会进行一个评价,比如在淘宝上面买了一个电视,有正面、负面评价。人可以简单地看一下就能知道它是好评还是差评,如何让计算机来实现同样的能力呢?
深度解析 P-tuning v2 为什么对大模型有效 提示调谐,只用冻结的语言模型来调谐连续的提示,大大减少了训练时每个任务的存储和内存使用。然而,在NLU的背景下,先前的工作显示,提示调谐对于正常大小的预训练模型表现不佳。我们还发现,现有的提示调谐方法不能处理硬序列标签任务,表明缺乏普遍性。我们提出了一个新的经验发现,即适当优化的提示调谐可以在广泛的模型规模和NLU任务中普遍有效。它与微调的性能相匹配,同时只有0.1%-3%的调整参数。我们的方法 P - Tuning v2 是 Deep Prompt Tuning ( Li and Liang, 2021;