人口增长模型

**人口增长模型
在这里插入图片描述
笔者今天整理了微分方程模型中的人口增长模型。
最早提出人口增长模型的是马尔萨斯,其模型最早发布于英国经济学家托马斯·罗伯特·马尔萨斯《人口原理》。在书中马尔萨斯指出,人口按几何级数增长。但是不得不提到的是,这本著作发布于1798年,故马尔萨斯人口论有其一定的历史背景和历史局限性。
我们首先来看他的建模过程(这种建模的思维过程值得学习借鉴):在这里插入图片描述在这里插入图片描述
作出dx/x-x曲线图,如图1所示,(代码:附录1)
由图1看出人口增长率随人口数的变化规律。
在这里插入图片描述
如图2所示,由图2可看出人口数随时间的变化规律。(代码:附录2)在这里插入图片描述当学习完两种人口模型以后,笔者突然想到病毒的转播模式是否也可以用以上模型拟合呢。自从新型冠状病毒引发肺炎疫情之后,我在各种媒体平台上看到了许多大佬的建模预测。“苔花如米小,也学牡丹开”,我虽然学识浅薄,但也跃跃欲试。
于是接着我做了下面的事情:我把从1.26之后十五天确诊的人数数据保存在‘data2.xls’中由于前期信息披露不及时,患者人数可认为是指数型增长。(代码:附录三)
在这里插入图片描述我放假的时间(1.10)代入可预测到,一月十日就已经出现了上百名患者,当时对疫情的不重视导致了病毒传染的温床。我们可以看到,自1.26的七天之后,指数模型就已经出现了大的偏颇。
用logstic模型拟合(附录四):
在这里插入图片描述
这个模型预测到在1.26之后的33天后(2.29),患者几乎不再增长。这种预测模型预测的时间可能不大准确,但是趋势最终将趋于平缓,最终的结果也一样。面对疫情,我们不要恐慌,只要相信国家,积极配合防疫工作。万众一心,一起共渡难关,勤洗手,戴口罩,对自己负责,对他人负责。疫情很快就会过去。我也希望能在那个时候去武汉故地重游,再带最爱的人去黄鹤楼上观长江莽莽横贯武昌和汉口,看春光烂漫时的樱花如霰。


附录一:
x=0:10:1000y=0.02*(1-x/1000).*x;
 grid on;
 plot(x,y) 

 附录二:
 x=dsolve('Dx=0.02*x*(1-x/1000)','x(0)=1','t');
 t=0:10:1000
 x1=eval(x);
 plot(t,x1,'k-') 

  附录三:
  clear;
  clc;
  data = xlsread ('data2.xls');%读取确诊人数数据
  T= data(1:9,1);
  X = data(1:9,2);
  y=log(X);
  t=[ones(9,1),T];%回归算法使用前加单一矩阵。
  [b,bint,r,rint,stats]=regress(y,t);
  rr=stats(1)%复相关系数
  F=stats(2);%f统计量值
  prob=stats(3)%概率xo=exp(b(1));
  r=b(2);
  py=xo*exp(r*T);
  plot(T,X,'r*',T,py)%做对比图

  附录四:
     data = xlsread ('data2.xls');
     t= data(1:15,1);
     x= data(1:15,2);
     beta0=[50000 0.1];
     [beta,r,J]=nlinfit(t,x,'volum1',beta0);
     plot(t,x,'g*');
     hold on;
     yi=volum1(beta,t);
     plot(t,yi,'r'); 
     
     Volum1.m文件:
      function  y1=volum1(beta,t)
      y1=beta(1)./(1+((beta(1)./2761)-1).*exp(-beta(2)*t));   
发布了2 篇原创文章 · 获赞 1 · 访问量 54
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 数字20 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览