在做数据分析时,需要根据某一列的值修改另外一列的值,此时就需要使用pd.loc()函数。
例子,
import pandas as pd
x2 = pd.read_csv("submit.csv")
x2

假如,我要修改id=800000的isDefault的值,代码:
x2.loc[x2.id==800000,'isDefault'] = 1
x2

或者修改id<=800003,isDefault改为"None"字符串,代码:
x2.loc[x2.id<=800003,'isDefault'] = 'None'
x2

所以pd.loc()函数还是很好用的。
有用请点个赞!!
本站所有文章均为原创,欢迎转载,请注明文章出处:https://blog.csdn.net/weixin_45092662。百度和各类采集站皆不可信,搜索请谨慎鉴别。技术类文章一般都有时效性,本人习惯不定期对自己的博文进行修正和更新,因此请访问出处以查看本文的最新版本。
在数据分析中,若要根据某列值修改另一列值,可使用pd.loc()函数。文中给出修改id=800000的isDefault值,以及将id<=800003的isDefault改为'None'字符串的代码示例,体现该函数的实用性。
8052

被折叠的 条评论
为什么被折叠?



