python使用pandas中获取Excel表中的数据(一)

pandas获取Excel表中的数据主要通过label或者position获取。今天主要学习如何通过Label获取,其中又包含两部分:第一部分,如何快速获取某一列的数据或者某几行的数据;第二部分,如何通过loc获取某一区域(cross)的数据。
1、获取某一列的数据。

>>> import pandas as pd
>>> df = pd.read_excel(r'D:\myExcel\1.xlsx', 'Sheet1')
>>> df
     name  math  science
0     bob    23       12
1  millor    32       32
2   jiken    61       89
3     tom    34       94
4    json    83       12
5    dela    96       67
6   rison    90       34
# 获取name列的数据有两种方法,如下所示
# Selecting a single column, which yields a Series, equivalent to df.A
>>> df['name']
0       bob
1    millor
2     jiken
3       tom
4      json
5      dela
6     rison
Name: name, dtype: object
>>> df.name
0       bob
1    millor
2     jiken
3       tom
4      json
5      dela
6     rison
Name: name, dtype: object

2、获取某一行或者某几行的数据
Selecting via [], which slices the rows.

>>> df[0:1]
  name  math  science
0  bob    23       12
>>> df[0:3]
     name  math  science
0     bob    23       12
1  millor    32       32
2   jiken    61       89
>>> 

3、使用loc[]获取某一区域的数据loc接受两个参数,第一个参数为行的index(在读取excel时,如果未指定则会默认添加一列数字为index)的列表或者切片,第二个参数可以为列的Label(index)的列表或者切片。下面举例说明:

# 如果没有第二个值,则默认为获取整行数据
# 获取某一行的数据
>>> df.loc[0]
name       bob
math        23
science     12
Name: 0, dtype: object
# 通过列表获取指定的整行数据,如下所示,获取0行和3行的数据
>>> df.loc[[0,3]]
  name  math  science
0  bob    23       12
3  tom    34       94
# 通过切片获取0-3行的整行数据
>>> df.loc[0:3]
     name  math  science
0     bob    23       12
1  millor    32       32
2   jiken    61       89
3     tom    34       94

# 获取某一列或者某几列的数据
>>> df.loc[:,['name', 'math']]
     name  math
0     bob    23
1  millor    32
2   jiken    61
3     tom    34
4    json    83
5    dela    96
6   rison    90
# 通过指定某几行以及列的切片获取指定位置的数据
>>> df.loc[[0,1],'name':'math']
     name  math
0     bob    23
1  millor    32

哈哈,以上就是pandas获取Excel中的数据的一种常用方法,本文重点介绍了loc方法,其需要传入两个参数,一个确定行一个确定列,均可以以列表或者切片的形式传入。如果您对pandas以及excel有兴趣,欢迎关注我的公众号:python小工具。
在这里插入图片描述

Python使用PandasExcel数据进行处理是非常方便和高效的。Pandas库提供了系列的函数和方法,可以读取、写入和操作Excel文件。首先,你可以使用Pandas的read_excel函数来读取Excel文件,并将其转换为DataFrame对象,这样你就可以方便地对数据进行处理和分析。\[2\]例如,你可以使用该函数指定要读取的Excel文件的路径和工作名称,还可以选择是否包含头等参数。接下来,你可以使用DataFrame对象的各种方法和属性来对数据进行清洗、转换和分析。例如,你可以使用DataFrame的head()方法来查看前几行数据使用describe()方法来获取数据的统计信息,使用sort_values()方法对数据进行排序等。此外,Pandas还提供了些特殊的函数和方法,用于处理缺失值、重复值、异常值等数据处理任务。最后,你可以使用to_excel()方法将处理后的数据写入到Excel文件中。该方法可以指定要写入的Excel文件的路径、工作名称以及其他参数,例如是否包含头、起始行和列等。\[3\]通过这些功能,你可以使用Pandas轻松地进行Excel数据处理,实现自动化的数据分析和清洗。 #### 引用[.reference_title] - *1* [【Python自动化Excelpandas处理Excel数据的基本流程](https://blog.csdn.net/kingwsq/article/details/123862892)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* *3* [python3使用pandas库处理excel文件](https://blog.csdn.net/weixin_43882507/article/details/127406977)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insertT0,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值