JDK8-HashMap源码浅析

本文详细介绍了HashMap的内部实现,包括其在JDK1.7及之前的数组+链表结构和JDK8引入的红黑树优化。HashMap通过计算键的哈希值来决定存储位置,解决哈希碰撞问题。文章还展示了HashMap的源码,包括构造函数、put、get和remove等关键操作,并探讨了哈希码计算中乘以31的原因。
摘要由CSDN通过智能技术生成

总叙

HashMap是Map接口下一个实现,提供键值对的存储。JDK1.7及以前通过数组+链表实现数据的存储,而JDK8开始加入了红黑树,存储结构做了优化,即存在两种存储方式:数组+链表数组+红黑树

如何实现存储

在开始之前可以先看看Hash表的相关内容。

  1. Hash表:理解为一个包含了多个格子的表,每个格子存放不同hash值的元素。例如格子1存放hash值为50的对象、格子2存放hash值为100的对象…
  2. Hash碰撞:不同的值计算出的Hash值一般情况下应该是不一样的,因而会存放到Hash表中的不同格子。但是如果把数据量放大到一定的数量级,就会出现不同的对象计算出来得Hash值相同,因此Hash表中的同一个格子可能同时存在多个元素,这就叫Hash碰撞。也可以借此说明Java中hash值相同的两个对象不一定是同一个对象,但是同一个对象的hash值一定是相同的。只有hash值和equals都true的时候才能说明是同一个对象。

了解了Hash表后再来看HashMap就清晰多了。如何决定将哪个链表插入到数组哪个位置,其实精髓就是HashMap为什么有个Hash,因为借助于Hash表来实现,即对要存储的key进行Hash值计算,通过一定逻辑的转换得到下标的值,于是将该key对应的value存放到数组的该下标位置。按照这种逻辑不断地进行存储,势必会出现多个key计算的下标位置相同,而数组的该下标位置已经有元素了。于是为了解决“碰撞”问题,HashMap通过链表来存储计算后下标相同的元素,然后将链表的头结点放到数组中,通过节点不断指向解决“碰撞”。
在这里插入图片描述
这是数组+链表的存储方式;数组+红黑树的方式只是将链表换成红黑树即可(红黑树也是基于链表的结构)

源码

类继承图

在这里插入图片描述

内部类链表实现

static class Node<K,V> implements Map.Entry<K,V> {
    final int hash;// 计算hash值
    final K key;// 用来计算hash的键
    V value;// 存储的值
    Node<K,V> next;// 指向下一个节点(形成链表)
    ...
}

字段

// 序列化id
private static final long serialVersionUID = 362498820763181265L;
// 默认初始化容量:16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 当构造函数中没有指定负载因子使使用的默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 链表转红黑树化的一个阈值
static final int TREEIFY_THRESHOLD = 8;
// 红黑树转链表的阈值
static final int UNTREEIFY_THRESHOLD = 6;
// 最小红黑树化容量
static final int MIN_TREEIFY_CAPACITY = 64;
// 链表数组
transient Node<K,V>[] table;
// 可以用来获取迭代器
transient Set<Map.Entry<K,V>> entrySet;
// HashMap实际存储的键值对的个数
transient int size;
// 用来记录该Has和Map存在的结构化的修改次数(键值对数量变化和reHash时候会记录)
// 字段用于检查线程不安全,提供快速失败机制
transient int modCount;
// 下一次扩容后的size,本次处罚扩容的阈值
int threshold;
// 负载因子
final float loadFactor;

构造方法

  • 带初始容量和负载因子的构造
public HashMap(int initialCapacity, float loadFactor) {
    if (initialCapacity < 0)
        throw new IllegalArgumentException("Illegal initial capacity: " +
                                           initialCapacity);
    if (initialCapacity > MAXIMUM_CAPACITY)
        initialCapacity = MAXIMUM_CAPACITY;
    if (loadFactor <= 0 || Float.isNaN(loadFactor))
        throw new IllegalArgumentException("Illegal load factor: " +
                                           loadFactor);
    this.loadFactor = loadFactor;
    this.threshold = tableSizeFor(initialCapacity);
}
  • 只带初始化容量(使用默认负载因子)的构造
public HashMap(int initialCapacity) {
    this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
  • 无参构造(全使用默认)
public HashMap() {
    this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
  • 带Map参数的构造方法(常用于需要一个相同键值对,但是一个全新的HashMap的情况)
public HashMap(Map<? extends K, ? extends V> m) {
	// 使用默认的负载(0.75)
    this.loadFactor = DEFAULT_LOAD_FACTOR;
    // 赋值
    putMapEntries(m, false);
}

final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
	// 获取原map的大小
    int s = m.size();
    if (s > 0) {
    	// 通过构造进来的时候,table还是null
        if (table == null) { 
        	// 计算出刚好未达到负载阈值
            float ft = ((float)s / loadFactor) + 1.0F;
            int t = ((ft < (float)MAXIMUM_CAPACITY) ?
                     (int)ft : MAXIMUM_CAPACITY);
            if (t > threshold)
            	// 拿到一个比t大而且是2的幂的数,如t=10,返回16,通过不断地移位来完成
                threshold = tableSizeFor(t); 
        }
        else if (s > threshold)
            resize();
        for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
            K key = e.getKey();
            V value = e.getValue();
             // 通过循环不断将旧map的映射赋值到新的map
            putVal(hash(key), key, value, false, evict);
        }
    }
}

// 假设cap为10
static final int tableSizeFor(int cap) {
    int n = cap - 1; // n = 9 1001
    n |= n >>> 1; // n = (n | (n >>> 1)) = (1001 | 0100) = 1101 = 13
    n |= n >>> 2; // n = (n | (n >>> 2)) = (1101 | 0011) = 1110 = 15
    n |= n >>> 4; // n = (n | (n >>> 4)) = (1110 | 0000) = 1110 = 15
    n |= n >>> 8; // n = (n | (n >>> 4)) = (1110 | 0000) = 1110 = 15
    n |= n >>> 16; // n = (n | (n >>> 4)) = (1110 | 0000) = 1110 = 15
    // 返回n + 1 = 16
    return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1; 
}

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
               boolean evict) {
    Node<K,V>[] tab; Node<K,V> p; int n, i;
    // 当table未被初始化,则进行初始化
    if ((tab = table) == null || (n = tab.length) == 0)
    	// 已经初始化完成,获取size
        n = (tab = resize()).length;
        // 计算出(根据key计算出的hash值)& (n-1) 计算出下标,并做null判断
    if ((p = tab[i = (n - 1) & hash]) == null)
    	// 为null则进行赋值
        tab[i] = newNode(hash, key, value, null); 
    else {
        Node<K,V> e; K k;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            e = p;
        else if (p instanceof TreeNode)
            e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
        else {
            for (int binCount = 0; ; ++binCount) {
                if ((e = p.next) == null) {
                    p.next = newNode(hash, key, value, null);
                    if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                        treeifyBin(tab, hash);
                    break;
                }
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    break;
                p = e;
            }
        }
        if (e != null) { // existing mapping for key
            V oldValue = e.value;
            if (!onlyIfAbsent || oldValue == null)
                e.value = value;
            afterNodeAccess(e);
            return oldValue;
        }
    }
    // 将修改记录+1
    ++modCount;
    // 判断是否需要扩容
    if (++size > threshold) 
        resize();
    afterNodeInsertion(evict);
    return null;
}

常用API

往HashMap中存值

public V put(K key, V value) {
    return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
                   boolean evict) {
        Node<K,V>[] tab; Node<K,V> p; int n, i;
        if ((tab = table) == null || (n = tab.length) == 0)// 当table未被初始化,则进行初始化
            n = (tab = resize()).length;// 已经初始化完成,获取size
        if ((p = tab[i = (n - 1) & hash]) == null)// 计算出(根据key计算出的hash值)& (n-1) 计算出下标,并做null判断
            tab[i] = newNode(hash, key, value, null); // 为null则进行赋值
        else {// 当前位置不是null(已经存在值)
            Node<K,V> e; K k;
            if (p.hash == hash &&
                ((k = p.key) == key || (key != null && key.equals(k))))
                e = p;// 键相同,hash值相同,值也相同,直接覆盖(如果为null,则首先是用链表存储的)
            else if (p instanceof TreeNode)// 如果是红黑树节点,则用红黑树存储
                e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
            else {
                for (int binCount = 0; ; ++binCount) {
                    if ((e = p.next) == null) {// 不是根节点,也不是红黑树,用链表存储
                        p.next = newNode(hash, key, value, null);
                        if (binCount >= TREEIFY_THRESHOLD - 1) // 判断是否达到转红黑树条件
                            treeifyBin(tab, hash);
                        break;
                    }
                    if (e.hash == hash &&
                        ((k = e.key) == key || (key != null && key.equals(k))))
                        break;// 如果hash值相同且键也相同,则直接覆盖
                    p = e;
                }
            }
            if (e != null) { // existing mapping for key
                V oldValue = e.value;
                if (!onlyIfAbsent || oldValue == null)
                    e.value = value;
                afterNodeAccess(e);
                return oldValue;
            }
        }
        ++modCount;// 将修改记录+1
        if (++size > threshold) // 判断是否需要扩容
            resize();
        afterNodeInsertion(evict);
        return null;
    }
  • 从HashMap中取值
final Node<K,V> getNode(int hash, Object key) {
    Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (first = tab[(n - 1) & hash]) != null) {
        if (first.hash == hash && // always check first node
            ((k = first.key) == key || (key != null && key.equals(k))))
            return first;
        if ((e = first.next) != null) {// 分情况去树节点中去取或者链表中去取
            if (first instanceof TreeNode)
                return ((TreeNode<K,V>)first).getTreeNode(hash, key);
            do {
                if (e.hash == hash &&
                    ((k = e.key) == key || (key != null && key.equals(k))))
                    return e;
            } while ((e = e.next) != null);
        }
    }
    return null;
}
  • 按照key删除元素
public V remove(Object key) {
    Node<K,V> e;
    return (e = removeNode(hash(key), key, null, false, true)) == null ?
        null : e.value;
}

final Node<K,V> removeNode(int hash, Object key, Object value,
                           boolean matchValue, boolean movable) {
    Node<K,V>[] tab; Node<K,V> p; int n, index;
    if ((tab = table) != null && (n = tab.length) > 0 &&
        (p = tab[index = (n - 1) & hash]) != null) {
        Node<K,V> node = null, e; K k; V v;
        if (p.hash == hash &&
            ((k = p.key) == key || (key != null && key.equals(k))))
            node = p;
        else if ((e = p.next) != null) {
            if (p instanceof TreeNode)
                node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
            else {
                do {
                    if (e.hash == hash &&
                        ((k = e.key) == key ||
                         (key != null && key.equals(k)))) {
                        node = e;
                        break;
                    }
                    p = e;
                } while ((e = e.next) != null);
            }
        }
        if (node != null && (!matchValue || (v = node.value) == value ||
                             (value != null && value.equals(v)))) {
            if (node instanceof TreeNode)
                ((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
            else if (node == p)
                tab[index] = node.next;
            else
                p.next = node.next;
            ++modCount;
            --size;
            afterNodeRemoval(node);
            return node;
        }
    }
    return null;
}
  • 清空HashMap
public void clear() {
    Node<K,V>[] tab;
    modCount++;
    if ((tab = table) != null && size > 0) {// 检查map是否为空
        size = 0;
        for (int i = 0; i < tab.length; ++i)// 只需将数组全部置为nul,待GC完成回收
            tab[i] = null;
    }
}
  • 判断是否包含value
public boolean containsValue(Object value) {
    Node<K,V>[] tab; V v;
    if ((tab = table) != null && size > 0) {
        for (int i = 0; i < tab.length; ++i) {// 遍历数组
            for (Node<K,V> e = tab[i]; e != null; e = e.next) {// 遍历链表
                if ((v = e.value) == value ||
                    (value != null && value.equals(v)))
                    return true;
            }
        }
    }
    return false;
}
  • 判断是否包含键
public boolean containsKey(Object key) {
    return getNode(hash(key), key) != null;
}

细节关注

hashCode方法中的为什么要乘以一个常数?
public int hashCode() {
    int h = hash;
    if (h == 0 && value.length > 0) {
        char val[] = value;

        for (int i = 0; i < value.length; i++) {
            h = 31 * h + val[i];
        }
        hash = h;
    }
    return h;
}

首先乘以一个数,可以散列hash值,而乘以31是一个统计结果,该数字下的hash碰撞较少,所以直接写死了。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值