总叙
HashMap是Map接口下一个实现,提供键值对的存储。JDK1.7及以前通过数组+链表实现数据的存储,而JDK8开始加入了红黑树,存储结构做了优化,即存在两种存储方式:数组+链表或数组+红黑树。
如何实现存储
在开始之前可以先看看Hash表的相关内容。
- Hash表:理解为一个包含了多个格子的表,每个格子存放不同hash值的元素。例如格子1存放hash值为50的对象、格子2存放hash值为100的对象…
- Hash碰撞:不同的值计算出的Hash值一般情况下应该是不一样的,因而会存放到Hash表中的不同格子。但是如果把数据量放大到一定的数量级,就会出现不同的对象计算出来得Hash值相同,因此Hash表中的同一个格子可能同时存在多个元素,这就叫Hash碰撞。也可以借此说明Java中hash值相同的两个对象不一定是同一个对象,但是同一个对象的hash值一定是相同的。只有hash值和equals都true的时候才能说明是同一个对象。
了解了Hash表后再来看HashMap就清晰多了。如何决定将哪个链表插入到数组哪个位置,其实精髓就是HashMap为什么有个Hash,因为借助于Hash表来实现,即对要存储的key进行Hash值计算,通过一定逻辑的转换得到下标的值,于是将该key对应的value存放到数组的该下标位置。按照这种逻辑不断地进行存储,势必会出现多个key计算的下标位置相同,而数组的该下标位置已经有元素了。于是为了解决“碰撞”问题,HashMap通过链表来存储计算后下标相同的元素,然后将链表的头结点放到数组中,通过节点不断指向解决“碰撞”。

这是数组+链表的存储方式;数组+红黑树的方式只是将链表换成红黑树即可(红黑树也是基于链表的结构)
源码
类继承图

内部类链表实现
static class Node<K,V> implements Map.Entry<K,V> {
final int hash;// 计算hash值
final K key;// 用来计算hash的键
V value;// 存储的值
Node<K,V> next;// 指向下一个节点(形成链表)
...
}
字段
// 序列化id
private static final long serialVersionUID = 362498820763181265L;
// 默认初始化容量:16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // aka 16
// 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30;
// 当构造函数中没有指定负载因子使使用的默认负载因子
static final float DEFAULT_LOAD_FACTOR = 0.75f;
// 链表转红黑树化的一个阈值
static final int TREEIFY_THRESHOLD = 8;
// 红黑树转链表的阈值
static final int UNTREEIFY_THRESHOLD = 6;
// 最小红黑树化容量
static final int MIN_TREEIFY_CAPACITY = 64;
// 链表数组
transient Node<K,V>[] table;
// 可以用来获取迭代器
transient Set<Map.Entry<K,V>> entrySet;
// HashMap实际存储的键值对的个数
transient int size;
// 用来记录该Has和Map存在的结构化的修改次数(键值对数量变化和reHash时候会记录)
// 字段用于检查线程不安全,提供快速失败机制
transient int modCount;
// 下一次扩容后的size,本次处罚扩容的阈值
int threshold;
// 负载因子
final float loadFactor;
构造方法
- 带初始容量和负载因子的构造
public HashMap(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal initial capacity: " +
initialCapacity);
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal load factor: " +
loadFactor);
this.loadFactor = loadFactor;
this.threshold = tableSizeFor(initialCapacity);
}
- 只带初始化容量(使用默认负载因子)的构造
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
}
- 无参构造(全使用默认)
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
- 带Map参数的构造方法(常用于需要一个相同键值对,但是一个全新的HashMap的情况)
public HashMap(Map<? extends K, ? extends V> m) {
// 使用默认的负载(0.75)
this.loadFactor = DEFAULT_LOAD_FACTOR;
// 赋值
putMapEntries(m, false);
}
final void putMapEntries(Map<? extends K, ? extends V> m, boolean evict) {
// 获取原map的大小
int s = m.size();
if (s > 0) {
// 通过构造进来的时候,table还是null
if (table == null) {
// 计算出刚好未达到负载阈值
float ft = ((float)s / loadFactor) + 1.0F;
int t = ((ft < (float)MAXIMUM_CAPACITY) ?
(int)ft : MAXIMUM_CAPACITY);
if (t > threshold)
// 拿到一个比t大而且是2的幂的数,如t=10,返回16,通过不断地移位来完成
threshold = tableSizeFor(t);
}
else if (s > threshold)
resize();
for (Map.Entry<? extends K, ? extends V> e : m.entrySet()) {
K key = e.getKey();
V value = e.getValue();
// 通过循环不断将旧map的映射赋值到新的map
putVal(hash(key), key, value, false, evict);
}
}
}
// 假设cap为10
static final int tableSizeFor(int cap) {
int n = cap - 1; // n = 9 1001
n |= n >>> 1; // n = (n | (n >>> 1)) = (1001 | 0100) = 1101 = 13
n |= n >>> 2; // n = (n | (n >>> 2)) = (1101 | 0011) = 1110 = 15
n |= n >>> 4; // n = (n | (n >>> 4)) = (1110 | 0000) = 1110 = 15
n |= n >>> 8; // n = (n | (n >>> 4)) = (1110 | 0000) = 1110 = 15
n |= n >>> 16; // n = (n | (n >>> 4)) = (1110 | 0000) = 1110 = 15
// 返回n + 1 = 16
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
// 当table未被初始化,则进行初始化
if ((tab = table) == null || (n = tab.length) == 0)
// 已经初始化完成,获取size
n = (tab = resize()).length;
// 计算出(根据key计算出的hash值)& (n-1) 计算出下标,并做null判断
if ((p = tab[i = (n - 1) & hash]) == null)
// 为null则进行赋值
tab[i] = newNode(hash, key, value, null);
else {
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
// 将修改记录+1
++modCount;
// 判断是否需要扩容
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
常用API
往HashMap中存值
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
}
final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<K,V>[] tab; Node<K,V> p; int n, i;
if ((tab = table) == null || (n = tab.length) == 0)// 当table未被初始化,则进行初始化
n = (tab = resize()).length;// 已经初始化完成,获取size
if ((p = tab[i = (n - 1) & hash]) == null)// 计算出(根据key计算出的hash值)& (n-1) 计算出下标,并做null判断
tab[i] = newNode(hash, key, value, null); // 为null则进行赋值
else {// 当前位置不是null(已经存在值)
Node<K,V> e; K k;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
e = p;// 键相同,hash值相同,值也相同,直接覆盖(如果为null,则首先是用链表存储的)
else if (p instanceof TreeNode)// 如果是红黑树节点,则用红黑树存储
e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
else {
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {// 不是根节点,也不是红黑树,用链表存储
p.next = newNode(hash, key, value, null);
if (binCount >= TREEIFY_THRESHOLD - 1) // 判断是否达到转红黑树条件
treeifyBin(tab, hash);
break;
}
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
break;// 如果hash值相同且键也相同,则直接覆盖
p = e;
}
}
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;// 将修改记录+1
if (++size > threshold) // 判断是否需要扩容
resize();
afterNodeInsertion(evict);
return null;
}
- 从HashMap中取值
final Node<K,V> getNode(int hash, Object key) {
Node<K,V>[] tab; Node<K,V> first, e; int n; K k;
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {// 分情况去树节点中去取或者链表中去取
if (first instanceof TreeNode)
return ((TreeNode<K,V>)first).getTreeNode(hash, key);
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
- 按照key删除元素
public V remove(Object key) {
Node<K,V> e;
return (e = removeNode(hash(key), key, null, false, true)) == null ?
null : e.value;
}
final Node<K,V> removeNode(int hash, Object key, Object value,
boolean matchValue, boolean movable) {
Node<K,V>[] tab; Node<K,V> p; int n, index;
if ((tab = table) != null && (n = tab.length) > 0 &&
(p = tab[index = (n - 1) & hash]) != null) {
Node<K,V> node = null, e; K k; V v;
if (p.hash == hash &&
((k = p.key) == key || (key != null && key.equals(k))))
node = p;
else if ((e = p.next) != null) {
if (p instanceof TreeNode)
node = ((TreeNode<K,V>)p).getTreeNode(hash, key);
else {
do {
if (e.hash == hash &&
((k = e.key) == key ||
(key != null && key.equals(k)))) {
node = e;
break;
}
p = e;
} while ((e = e.next) != null);
}
}
if (node != null && (!matchValue || (v = node.value) == value ||
(value != null && value.equals(v)))) {
if (node instanceof TreeNode)
((TreeNode<K,V>)node).removeTreeNode(this, tab, movable);
else if (node == p)
tab[index] = node.next;
else
p.next = node.next;
++modCount;
--size;
afterNodeRemoval(node);
return node;
}
}
return null;
}
- 清空HashMap
public void clear() {
Node<K,V>[] tab;
modCount++;
if ((tab = table) != null && size > 0) {// 检查map是否为空
size = 0;
for (int i = 0; i < tab.length; ++i)// 只需将数组全部置为nul,待GC完成回收
tab[i] = null;
}
}
- 判断是否包含value
public boolean containsValue(Object value) {
Node<K,V>[] tab; V v;
if ((tab = table) != null && size > 0) {
for (int i = 0; i < tab.length; ++i) {// 遍历数组
for (Node<K,V> e = tab[i]; e != null; e = e.next) {// 遍历链表
if ((v = e.value) == value ||
(value != null && value.equals(v)))
return true;
}
}
}
return false;
}
- 判断是否包含键
public boolean containsKey(Object key) {
return getNode(hash(key), key) != null;
}
细节关注
hashCode方法中的为什么要乘以一个常数?
public int hashCode() {
int h = hash;
if (h == 0 && value.length > 0) {
char val[] = value;
for (int i = 0; i < value.length; i++) {
h = 31 * h + val[i];
}
hash = h;
}
return h;
}
首先乘以一个数,可以散列hash值,而乘以31是一个统计结果,该数字下的hash碰撞较少,所以直接写死了。
本文详细介绍了HashMap的内部实现,包括其在JDK1.7及之前的数组+链表结构和JDK8引入的红黑树优化。HashMap通过计算键的哈希值来决定存储位置,解决哈希碰撞问题。文章还展示了HashMap的源码,包括构造函数、put、get和remove等关键操作,并探讨了哈希码计算中乘以31的原因。
4722

被折叠的 条评论
为什么被折叠?



