使用df.corr(method=‘pearson‘)皮尔逊系数计算列与列的相关性,得到对应的热力图

本文介绍了如何利用Python中的pandas库,通过df.corr()函数计算DataFrame中列与列之间的皮尔逊相关系数,并进一步展示为直观的热力图,以帮助理解数据的相关性。
摘要由CSDN通过智能技术生成

你唯一需要做的就是df=需要计算相关性的dataframe
然后无脑运行,你就会得到类似的相关性热力图
在这里插入图片描述

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns  # 可视化w

inputdata = pd.read_csv('你的文件地址')
plt.rcParams['font.sans-serif'
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值