微分方程解的结构

数学 专栏收录该内容
15 篇文章 0 订阅

复习一下微分方程解的结构
(公式懒得用markdwon了,全用书上截图了)


tips:
1.微分方程指的是:含有未知函数及其导数的方程。
2.阶数取决于方程中出现的最高次导数阶数。
3.解微分方程主要有关两个问题:初值问题 边界值问题

初值问题:在给微分方程添加附加条件时,给出的是初始条件,一般是自变量为零时的函数值在这里插入图片描述

边界值问题:边值问题则是方程的边界条件,即自变量取某一值对应的函数值。
对于一阶方程,往往只需要初始条件就可以得到方程的特解,对于二阶或者二阶以上的微分方程,则需要边界条件。

一阶微分方程

标准形式:
y ′ = f ( x , y ) y\prime=f(x,y) y=f(x,y)

微分形式:
在这里插入图片描述

可分离变量的方程

可以将微分形式写成:

g( y )dy=f( x )dx

`
也就是满足 M(x,y)=M(x) , N(x,y)=N(y)的情况
对于g(y),f(x),假定他们是连续的,对两侧求积分( 或者把N(y)移到等式右边再求积分 )
在这里插入图片描述
然后用数值方法得到近似解。

例题:求解在这里插入图片描述

在这里插入图片描述

齐次方程

齐次微分方程:
在这里插入图片描述
具有这个特性:

φ(tx,ty)=φ(x,y)
·

对于齐次方程,一般要引进新的未知函数 y=xu,
在这里插入图片描述
再分离变量,把齐次化为可分离变量的方程:
在这里插入图片描述
再两端积分,求出积分后用y/x替换掉u即可得到通解。

可化为齐次的方程(可适用于更一般的方程)

方程在这里插入图片描述
当c=c1=0时,是齐次的,否则是非齐次的。可以通过变换将其转为齐次的。

令x=X+h,y=Y+k,h和k均为常数,于是 dx=dX,dy=dY
从而方程转为:

在这里插入图片描述
若 a1/a≠b1/b ,那么将方程转化为齐次方程:

在这里插入图片描述
求出通解后再用 x-h代替X,y-h代替Y,便得到通解。

若 a1/a=b1/b,h及k无法求得,此时令a1/a=b1/b=λ方程便可以写成
在这里插入图片描述

引入v=ax+by,则
在这里插入图片描述
化为可分离变量方程:
在这里插入图片描述

··

齐次方程和准齐次方程的解法基本都是将其化为可分离变量的方程,准齐次方程在化为可分离变量之前要先引入新变量,将方程化为齐次方程
·
·
·

一阶线性微分方程

一阶线性微分方程具有以下形式:
在这里插入图片描述
求通解的步骤是先求其对应的齐次方程的解,然后转为非齐次方程

令Q(x)=0,求其对应齐次方程通解
分离变量得:
在这里插入图片描述
两端积分再移项得
在这里插入图片描述

这是对应得齐次方程得解,现在转换为非齐次方程
使用常数变异法求其通解
做变换:
在这里插入图片描述
于是得到:
在这里插入图片描述
代入方程并两端求积分:
在这里插入图片描述
得到通解
在这里插入图片描述
通解中第一项是对应齐次方程的解,第二项是非齐次方程的特解,可以看出,一阶非齐次线性方程的通解是其对应齐次方程的通解与一个非齐次方程的特解之和。

伯努利方程

伯努利方程具有以下特征:
在这里插入图片描述
当n=0或1时,是线性微分方程。当其他情况时,这方程不是线性的,需要通过变量代换将其变为线性的。以 y n y^n yn除方程两端,得到
图片描述
此时引入新的变量 z = y 1 − n z=y^{1-n} z=y1n,有
d z d x = ( 1 − n ) ∗ y − n d y d x \frac{dz}{dx}=(1-n)*y^{-n}\frac{dy}{dx} dxdz=(1n)yndxdy
用1-n乘方程的两端,再通过zx的线性变换,便得到线性方程:
d z d x + ( 1 − n ) P ( x ) z = ( 1 − n ) Q ( x ) \frac{dz}{dx}+(1-n)P(x)z=(1-n)Q(x) dxdz+(1n)P(x)z=(1n)Q(x)
求出通解后以 y 1 − n y^{1-n} y1n代替z便得到伯努利方程的通解。

可降价的高级微分方程

一. y n = f ( x ) y^{n}=f(x) yn=f(x) 型微分方程

假设微分方程 y n = f ( x ) y^{n}=f(x) yn=f(x) 是二阶或二阶以上的微分方程,只需把 y n − 1 y^{n-1} yn1 作为新的未知函数,那么原式就会变成一个一阶微分方程,两边积分,就会得到一个 n − 1 n-1 n1 阶的微分方程
y n − 1 = ∫ f ( x ) d x + C 1 y^{n-1}=\int f(x)dx+C1 yn1=f(x)dx+C1
同理可得:
y n − 2 = ∫ [ ∫ f ( x ) d x + C 1 ] d x + C 2 y^{n-2}=\int[\int f(x)dx+C1]dx+C2 yn2=[f(x)dx+C1]dx+C2
依此法连续积分n次,便可得到含n个常数的通解

二. y ′ ′ = f ( x , y ′ ) y\prime\prime=f(x,y\prime) y=f(x,y)型微分方程

对于 y ′ ′ = f ( x , y ′ ) y\prime\prime=f(x,y\prime) y=f(x,y),设 y ′ = p y\prime=p y=p,那么 y ′ ′ = p ′ y\prime\prime=p\prime y=p,方程转换为
p ′ = f ( x , p ) p\prime=f(x,p) p=f(x,p)
这时变成一个一阶微分方程,通解是
p = ψ ( x , C 1 ) p=\psi(x,C1) p=ψ(x,C1)
把p打开写:
d y d x = ψ ( x , C 1 ) \frac{dy}{dx}=\psi(x,C1) dxdy=ψ(x,C1)
进行积分,得到通解:
y = ∫ ψ ( x , C 1 ) d x + C 2 y=\int \psi(x,C1)dx+C2 y=ψ(x,C1)dx+C2

三. y ′ ′ = f ( y , y ′ ) y\prime\prime=f(y,y\prime) y=f(y,y)型微分方程

方程 y ′ ′ = f ( y , y ′ ) y\prime\prime=f(y,y\prime) y=f(y,y)不含自变量x
y ′ = p y\prime=p y=p,把 y ′ ′ y\prime\prime y 化为对 y y y 的导数
y ′ ′ = d p d x = d p d y ∗ d y d x = p ∗ d p d y y\prime\prime=\frac{dp}{dx}=\frac{dp}{dy}*\frac{dy}{dx}=p*\frac{dp}{dy} y=dxdp=dydpdxdy=pdydp
这时方程就成了
p d p d y = f ( x , p ) p\frac{dp}{dy}=f(x,p) pdydp=f(x,p)
这是个一阶微分方程设他的通解为
y ′ = p = ψ ( y , C 1 ) y\prime=p=\psi(y,C1) y=p=ψ(y,C1)
分离变量并积分,得到通解:
∫ d y ψ ( y , C 1 ) = x + C 2 \int \frac{dy}{\psi(y,C1)}=x+C2 ψ(y,C1)dy=x+C2

线性微分方程解的结构(几个定理)

先讨论二阶齐次线性方程 y ′ + P ( x ) y ′ + Q ( x ) y = 0 (1-1) y\prime+P(x)y\prime+Q(x)y=0 \tag{1-1} y+P(x)y+Q(x)y=0(1-1)

定理1

如果函数 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是上述方程的两个解,则
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)也是方程(1-1)的解,其中C1,C2是任意常数

定理2

如果 y 1 ( x ) y_1(x) y1(x) y 2 ( x ) y_2(x) y2(x)是方程(1-1)的两个线性无关的特解,则
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) y=C_1y_1(x)+C_2y_2(x) y=C1y1(x)+C2y2(x)是方程(1-1)的通解,其中C1,C2是任意常数

推论(把定理2推广到n阶齐次线性方程)

如果 y 1 ( x ) , y 2 ( x ) , . . . , y n ( x ) y_1(x),y_2(x),...,y_n(x) y1(x),y2(x),...,yn(x)是n阶线性方程
y ( n ) + a 1 ( x ) y ( n ) + . . . + a n − 1 ( x ) y ′ + a n ( x ) y = 0 y^{(n)}+a_1(x)y^{(n)}+...+a_{n-1}(x)y\prime+a_n(x)y=0 y(n)+a1(x)y(n)+...+an1(x)y+an(x)y=0
的n个线性无关的解,则此方程的通解为
y = C 1 y 1 ( x ) + C 2 y 2 ( x ) + . . . + C n y n ( x ) y=C_1y_1(x)+C_2y_2(x)+...+C_ny_n(x) y=C1y1(x)+C2y2(x)+...+Cnyn(x)
其中C1,C2…为任意常数

定理3

二阶非齐次线性微分方程的通解可以分解为其一个特解其对应的齐次方程的通解之和
y = Y ( X ) + y ∗ ( x ) y=Y(X)+y^*(x) y=Y(X)+y(x)

定理4

设非齐次线性方程的右端 f ( x ) f(x) f(x)是两个函数之和,即
y ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) + f 2 ( x ) (2) y\prime+P(x)y\prime+Q(x)y=f_1(x)+f_2(x)\tag{2} y+P(x)y+Q(x)y=f1(x)+f2(x)(2)
f 1 ( x ) , f 2 ( x ) f_1(x),f_2(x) f1(x),f2(x)分别是方程
y ′ + P ( x ) y ′ + Q ( x ) y = f 1 ( x ) y\prime+P(x)y\prime+Q(x)y=f_1(x) y+P(x)y+Q(x)y=f1(x)
y ′ + P ( x ) y ′ + Q ( x ) y = f 2 ( x ) y\prime+P(x)y\prime+Q(x)y=f_2(x) y+P(x)y+Q(x)y=f2(x)
的特解。则 f 1 ( x ) + f 2 ( x ) f_1(x)+f_2(x) f1(x)+f2(x)是原方程(2)的特解
这一定理又叫线性微分方程解的叠加原理

  • 7
    点赞
  • 3
    评论
  • 15
    收藏
  • 打赏
    打赏
  • 扫一扫,分享海报

评论 3 您还未登录,请先 登录 后发表或查看评论
©️2022 CSDN 皮肤主题:1024 设计师:我叫白小胖 返回首页

打赏作者

小白b2

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值