集合数据类型(set)

- 特点
1、无序、去重
2、元素是字符串类型
3、最多包含2^32-1个元素
# 1、增加一个或者多个元素,自动去重;返回值为成功插入到集合的元素个数
SADD key member1 member2
# 2、查看集合中所有元素
SMEMBERS key
# 3、删除一个或者多个元素,元素不存在自动忽略
SREM key member1 member2
# 4、元素是否存在
SISMEMBER key member
# 5、随机返回集合中指定个数的元素,默认为1个
SRANDMEMBER key [count]
# 6、弹出成员
SPOP key [count]
# 7、返回集合中元素的个数,不会遍历整个集合,只是存储在键当中了
SCARD key
# 8、把元素从源集合移动到目标集合
SMOVE source destination member
# 9、差集(number1 1 2 3 number2 1 2 4 结果为3)
SDIFF key1 key2
# 10、差集保存到另一个集合中
SDIFFSTORE destination key1 key2
# 11、交集
SINTER key1 key2
SINTERSTORE destination key1 key2
# 11、并集
SUNION key1 key2
SUNIONSTORE destination key1 key2
案例: 新浪微博的共同关注
# 需求: 当用户访问另一个用户的时候,会显示出两个用户共同关注过哪些相同的用户
# 设计: 将每个用户关注的用户放在集合中,求交集即可
# 实现:
user001 = {'peiqi','qiaozhi','danni'}
user002 = {'peiqi','qiaozhi','lingyang'}
user001和user002的共同关注为:
SINTER user001 user002
结果为: {'peiqi','qiaozhi'}
python操作set
import redis
r = redis.Redis(password='123456')
'''
武将: 张飞 许褚 赵云 马超 周瑜
文臣: 诸葛亮 周瑜 司马懿
结果: 1.纯武将 2.纯文臣 3.文武双全 4.文臣武将
'''
# set集合类型的操作
r.sadd('武将', '张飞', '许褚', '赵云', '马超', '周瑜')
r.sadd('文臣', '诸葛亮', '周瑜', '司马懿')
data1 = r.sdiff('武将', '文臣')
result = []
for item in data1:
result.append(item.decode())
print('纯武将:', result)
data2 = r.sdiff('文臣', '武将')
result = []
for item in data2:
result.append(item.decode())
print('纯文臣:', result)
data3 = r.sinter('文臣', '武将')
result = []
for item in data3:
result.append(item.decode())
print('文武双全:', result)
data4 = r.sunion('文臣', '武将')
result = []
for item in data4:
result.append(item.decode())
print('文臣武将:', result)
有序集合sortedset
1、有序、去重
2、元素是字符串类型
3、每个元素都关联着一个浮点数分值(score),并按照分值从小到大的顺序排列集合中的元素(分值可以相同)
4、最多包含2^32-1元素
-
示例
一个保存了水果价格的有序集合
| 分值 | 2.0 | 4.0 | 6.0 | 8.0 | 10.0 |
|---|---|---|---|---|---|
| 元素 | 西瓜 | 葡萄 | 芒果 | 香蕉 | 苹果 |
一个保存了员工薪水的有序集合
| 分值 | 6000 | 8000 | 10000 | 12000 | |
|---|---|---|---|---|---|
| 元素 | lucy | tom | jim | jack |
一个保存了正在阅读某些技术书的人数
| 分值 | 300 | 400 | 555 | 666 | 777 |
|---|---|---|---|---|---|
| 元素 | 核心编程 | 阿凡提 | 本拉登 | 阿姆斯特朗 | 比尔盖茨 |
# 在有序集合中添加一个成员 返回值为 成功插入到集合中的元素个数
zadd key score member
# 查看指定区间元素(升序)
zrange key start stop [withscores]
# 查看指定区间元素(降序)
zrevrange key start stop [withscores]
# 查看指定元素的分值
zscore key member
# 返回指定区间元素
# offset : 跳过多少个元素
# count : 返回几个
# 小括号 : 开区间 zrangebyscore fruits (2.0 8.0
zrangebyscore key min max [withscores] [limit offset count]
# 每页显示10个成员,显示第5页的成员信息:
# limit 40 10
# MySQL: 每页显示10条记录,显示第5页的记录
# limit 40,10
# limit 2,3 显示: 第3 4 5条记录
# 删除成员
zrem key member
# 增加或者减少分值
zincrby key increment member
# 返回元素排名
zrank key member
# 返回元素逆序排名
zrevrank key member
# 删除指定区间内的元素
zremrangebyscore key min max
# 返回集合中元素个数
zcard key
# 返回指定范围中元素的个数
zcount key min max
zcount salary 6000 8000
zcount salary (6000 8000# 6000<salary<=8000
zcount salary (6000 (8000#6000<salary<8000
# 并集
zunionstore destination numkeys key [weights 权重值] [AGGREGATE SUM|MIN|MAX]
# zunionstore salary3 2 salary salary2 weights 1 0.5 AGGREGATE MAX
# 2代表集合数量,weights之后 权重1给salary,权重0.5给salary2集合,算完权重之后执行聚合AGGREGATE
# 交集:和并集类似,只取相同的元素
zinterstore destination numkeys key1 key2 weights weight AGGREGATE SUM(默认)|MIN|MAX
python操作sorted set
import redis
r = redis.Redis(password='123456')
# 有序集合类型的操作
r.zadd('pyzk1', {'tedu': 100, 'tedu2': 200})
print(r.zrange('pyzk1', 0, -1, withscores=True))
r.zadd('pyzk2', {'tedu2': 200, 'tedu3': 200})
# 并集运算
r.zunionstore('pyzk3',['pyzk1','pyzk2'],aggregate='sum')
print(r.zrange('pyzk3', 0, -1, withscores=True))
# 并集运算(带权重)
r.zunionstore('pyzk4',{'pyzk1':0.8,'pyzk2':0.2},
aggregate='sum')
print(r.zrange('pyzk4', 0, -1, withscores=True))

657

被折叠的 条评论
为什么被折叠?



