PolyWorld Polygonal Building Extraction with Graph Neural Networks in Satellite Images 代码解读

 (1)作者没有给训练代码和

 从上图种可以看到,红色的是图片的过程,蓝色的是主要的模块。

(2)

可以看到,四个主要的模块如图所示。 

 

 

 他的参数都是写死的,看来比较好读。、

 第一个,主要就是特征提取器,好像没看出特别的部分。

 如果输入是(2,3,512,512)的,那么他的输出是(2,64,512,512)的,也就是只改变了通道数,其他的分辨率啥的都没变。

(3)然后接下来,让我们看看下一个模块。

 经过这个detectionbranch模块,输出变成了2,1,512,512维度的,这只改变了通道的数量,没改变其他的数量。让我们继续看看这个是在干嘛。

(4)

然后下一步,一个x是(2,1,512,512)维度的,一个graph是(2,256,2)维度的。 

(5)

在预测的时候,需要用的,1.原始的图片。2.model提取的特征。3.压缩的graph。graph的维度是(2,256,2)维度的图。

 

geometric modeling based on polygonal meshes (基于多边形网格的几何建模)是一种常用的三维建模方法,主要用于创建、编辑和操作多边形网格模型。该方法使用一系列的顶点、边和面来描述物体的几何结构。 这种建模方法的代码实现包括以下几个关键步骤。首先,通过读取或创建输入的多边形网格数据,包括顶点坐标和面的连接信息。接下来,进行模型的编辑和操作,比如移动顶点、调整边和面,或者添加删除顶点、边和面。在编辑过程中,还可以进行细分、合并、镜像、变形等操作,以获得更复杂的几何形状。 在编辑完成后,多边形网格模型可以进行进一步的处理和优化。例如,进行曲面重建以得到光滑的几何表面,进行材质和纹理的贴图,或者进行拓扑结构优化以减少模型的面数和存储空间。 在代码实现中,需要使用适当的数据结构来表示多边形网格,比如使用数组、链表或树等方式存储顶点、边和面的信息。同时,还需要实现各种编辑和操作的算法,如移动、旋转、缩放等,以及模型处理和优化的算法。 此外,为了提高建模效率和减少计算复杂度,可以使用一些优化技术,如边缘塌陷、局部细分、空间划分等,来提高代码性能和减少内存占用。 综上所述,geometric modeling based on polygonal meshes的代码实现涉及了多个关键步骤和算法,以实现对三维模型的创建、编辑和优化。这种方法在计算机图形学、虚拟现实、游戏开发等领域得到广泛应用,为我们提供了强大而灵活的三维形状建模工具。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值