【GVN】Kildall算法的推导

本文的例子来自RKS算法的那篇文章《Detecting Equalities of Variables: Combining
Efficiency with Precision》,只是进行了部分现代化和本土化。
在这里插入图片描述首先,对于非循环的情况,Kildall会将所有节点的进入和离开状态都设为空集,进行悲观推导。
在这里插入图片描述
推导完得到的2号基本块和3号基本块的出口状态对应的集合如上所示,其中2+1并不写为3(如果 要进行常量折叠的话可以写为3)。
Kildall算法的meet操作是intersection,所以得到的结果如下:
在这里插入图片描述
对于循环的情况,除了开始节点的入口,所有节点的集合都要设为T,进行乐观推理。

在这里插入图片描述

在这里插入图片描述
对于循环的情况,首先会进行循环入口节点的状态计算,此时因为是T,所以可以顺利传递进去。在这里插入图片描述一轮传递过后,可能还需要重新传递,因为一些循环改变量会影响intersection的结果。
在这里插入图片描述
在这里插入图片描述
上图展示了第二轮循环的情况,此时如果哪个节点的入口状态不发生改变说明循环结构达到了fixed point。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值