DoRA(权重分解低秩适应):一种新颖的模型微调方法

文章介绍了DoRA,一种在LoRA基础上改进的模型微调方法,通过将预训练权重分解为“幅度”和“方向”,提供更精细的控制和学习能力,以降低计算成本并提高模型在特定任务上的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

来自:小互

DoRA(权重分解低秩适应):一种新颖的模型微调方法

DoRA在LoRA的基础上进一步发展,通过将预训练权重分解为“幅度”和“方向”两个部分进行微调。

这种权重分解方法允许DoRA更精细地控制模型的学习过程,分别针对权重的大小和方向进行优化。

相比LoRA,它提供了一种更精细、更全面的微调策略。

模型微调的挑战

当我们有一个已经训练好的AI模型时,如果想让它适应一些新的任务,我们通常会进行所谓的“微调”,即对模型进行一些小的调整。这就像是给模型上一堂速成课,让它快速学习新技能。但问题是,随着模型变得越来越大,这种“速成课”的成本也越来越高,不仅需要大量的计算资源,还可能使模型变得笨重,影响其运行速度。

DoRA(权重分解低秩适应)和LoRA(低秩适应)都是针对预训练模型进行微调的方法,旨在提高模型针对特定任务的性能,同时尽量减少计算成本和资源需求。尽管两者都旨在实现参数高效的微调,但它们在方法和优势上有所不同。

LoRA的基本原理:

LoRA通过在模型的权重更新中引入低秩矩阵,来实现对模型的高效微调。具体来说,它通过使用两个较小的矩阵的乘积来近似权重的更新,从而减少了需要训练的参数数量。这种方法不改变原始模型的架构,因此不会增加额外的推理负担。

DoRA的创新之处:

DoRA在LoRA的基础上进一步发展,通过将预训练权重分解为“幅度”和“方向”两个部分进行微调。这种权重分解方法允许DoRA更精细地控制模型的学习过程,分别针对权重的大小和方向进行优化。在调整方向部分时,DoRA利用了LoRA的策略,通过低秩适应来有效地更新方向,而幅度部分则单独进行调整。

通俗解释就是:DoRA通过一种聪明的方法来解决这个问题。它将模型的“知识”(即模型中的权重)分解成两个部分:一部分负责“方向”(即模型应该如何调整其判断),另一部分负责“幅度”(即这种调整有多大)。通过这种分解,DoRA可以更精细地调整模型,就像是给模型提供了一个更加个性化的“速成课”。

低秩适应的聪明之处

在调整“方向”部分时,DoRA使用了一种名为LoRA的技术,这种技术只需调整很少量的数据就能实现有效的微调。这就好比是在教模型新技能时,只需给模型一些关键的提示而不是让它重新学习一遍所有的内容。

DoRA相对于LoRA的优势:

  • 1、更细致的控制:通过分别针对权重的幅度和方向进行调整,DoRA提供了对模型微调过程更细致的控制,从而能够更准确地适应特定的任务需求。

  • 2、增强的学习能力:DoRA的权重分解策略增强了模型在微调过程中的学习能力,使其在多种下游任务上的性能更接近于全参数微调的方法。

  • 3、保持高效性:尽管DoRA在微调策略上进行了创新,但它仍然保持了LoRA的高效性,避免增加额外的推理负担。

  • 4、提高训练稳定性:DoRA通过分解权重并专门针对方向使用低秩适应,提高了训练过程的稳定性,有助于避免过拟合和其他训练问题。

举例解释DoRA和LoRA的区别:

要理解DoRA在LoRA基础上的进一步发展和其权重分解方法,我们可以用一个简化的类比来帮助说明:

想象你有一辆车(代表预训练的AI模型),现在你的目标是让这辆车能够在一个新的赛道上(特定任务)尽可能好地运行。为了达到这个目标,你需要对车进行调整。在这个例子中,车的“方向”代表模型做决策的方向或方式,而“幅度”则代表这些决策的强度或信心。

LoRA的方法:

如果仅使用LoRA,这就像是你只能调整方向盘的灵敏度(方向),来使车更好地适应赛道。这种方法有效,但可能不足以让车在所有情况下都表现最佳,因为你没有考虑到其他因素,比如加速的力度。

DoRA的创新:

在DoRA中,你不仅调整方向盘的灵敏度,还可以调整油门的敏感度(幅度)。这样,你就可以更细致地控制车的行驶,既能确保它沿着正确的路径前进,又能控制它的速度,以应对不同的路况。

  • 方向调整:通过LoRA进行低秩适应,相当于调整方向盘的灵敏度,让AI模型在做出决策时能更精确地指向正确的方向。

  • 幅度调整:独立进行的幅度调整,就像是根据赛道的不同部分调整油门的敏感度,让模型对它的决策有适当的信心。

通过这种方法,DoRA能够更全面地对模型进行微调,既考虑到了决策的方向,又优化了这些决策的强度。这使得DoRA在特定任务上的性能更接近于全参数微调方法,而且相比LoRA,它提供了一种更精细、更全面的微调策略。简而言之,DoRA通过在LoRA的基础上增加幅度的调整,使模型的微调更加细致和有效。

### DoRA 微调源码分析 DoRA(Denoising and Representation Alignment)是一种用于改进模型鲁棒性和表示学习的技术。对于DoRA微调源码的理解可以从以下几个方面展开: #### 数据准备阶段 在数据处理部分,通常会涉及原始数据集的加载以及预处理操作。这包括但不限于去除噪声、标准化输入格式等措施来提升后续训练过程中的效率与效果。 ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') model = AutoModelForSequenceClassification.from_pretrained('bert-base-uncased', num_labels=2) def preprocess_data(raw_datasets): tokenized_datasets = raw_datasets.map(lambda examples: tokenizer(examples['text'], padding="max_length", truncation=True), batched=True) return tokenized_datasets ``` 此代码片段展示了如何利用Hugging Face库加载BERT模型并对其进行序列分类任务下的调整[^1]。 #### 模型配置与优化器设置 针对特定应用场景的需求,在原有基础架构之上做出相应修改是非常重要的一步。比如增加新的层结构或是改变损失函数的形式等等;与此同时还需要精心挑选适合当前项目的梯度下降算法及其超参数组合方案以加速收敛速度同时防止过拟合现象的发生。 ```python optimizer = torch.optim.AdamW(model.parameters(), lr=5e-5) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=30, gamma=0.1) ``` 上述Python脚本说明了AdamW作为首选求解工具之一被广泛应用于自然语言处理领域内各种类型的神经网络之中,并通过设定适当的学习率衰减策略进一步提高了泛化能力[^2]。 #### 训练循环设计 最后进入核心环节——迭代更新权重直至满足终止条件为止。期间不仅要注意监控各项性能指标的变化趋势以便及时作出反应,而且也要定期保存最佳版本以防意外丢失重要成果。 ```python for epoch in range(num_epochs): model.train() for batch in train_dataloader: outputs = model(**batch) loss = outputs.loss loss.backward() optimizer.step() scheduler.step() optimizer.zero_grad() # Evaluation phase can be added here. ``` 这段伪代码概括了一个标准的小批量随机梯度上升法执行流程,其中包含了前向传播计算预测误差反传至各层节点处累积梯度值再经由链式法则传递给相邻单元完成一轮完整的权值修正动作。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

TrustZone_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值