9. MapReduce工作流程

本文详细解析了MapReduce的工作流程,特别聚焦于Shuffle过程,包括MapTask如何收集kv对,溢出本地磁盘文件,分区与排序,以及ReduceTask如何获取并合并来自不同MapTask的数据。

MapReduce工作流程

1. 工作流程图

在这里插入图片描述

2. 流程详解

上面的流程是整个MapReduce最全工作流程,但是Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:

  1. MapTask收集我们的map()方法输出的kv对,放到内存缓冲区中。
  2. 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件。
  3. 多个溢出文件会被合并成大的溢出文件。
  4. 在溢出过程及合并的过程中,都要调用Partitioner进行分区和针对key进行排序
  5. ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
  6. ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
  7. 合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)

注意:

Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。

缓冲区的大小可以通过参数调整:io.sort.mb默认100M。

1. MapReduce 是一种分布式计算模型,其工作原理是将一个大规模数据集分成若干小的数据块进行处理,每个数据块可以在不同的计算节点上并行处理,最终将处理结果合并输出。MapReduce 采用了一种简单的函数式编程模型,即用户只需要提供两个函数,即 Map 函数和 Reduce 函数,系统会自动将数据集分割成小块并将它们分配给不同的计算节点进行计算,最后将计算结果进行合并输出。 2. MapReduce 的处理流程如下:首先,MapReduce 将输入数据划分成若干个小块,然后将这些小块分配给不同的计算节点进行处理。在每个计算节点上,数据块会经过两个阶段的处理:Map 阶段和 Reduce 阶段。在 Map 阶段,计算节点会对输入数据进行处理,产生一些键值对。这些键值对会被分组并排序,然后传递给 Reduce 阶段进行进一步的处理。在 Reduce 阶段,计算节点会对 Map 阶段产生的键值对进行聚合和计算,最终得到处理结果。 3.MapReduce 程序中,必须包含以下几个模块: - Input Module:输入模块,用于读取输入数据。 - Map Function:Map 函数,用于对输入数据进行处理,产生一些键值对。 - Partition Function:分区函数,用于将 Map 函数产生的键值对进行分组。 - Sort Function:排序函数,用于对分组后的键值对进行排序。 - Reduce Function:Reduce 函数,用于对排序后的键值对进行聚合和计算。 - Output Module:输出模块,用于输出处理结果。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值