MapReduce工作流程
1. 工作流程图

2. 流程详解
上面的流程是整个MapReduce最全工作流程,但是
Shuffle过程只是从第7步开始到第16步结束,具体Shuffle过程详解,如下:
- MapTask收集我们的map()方法输出的kv对,放到
内存缓冲区中。- 从内存缓冲区不断溢出本地磁盘文件,可能会溢出多个文件。
- 多个溢出文件会被合并成大的溢出文件。
- 在溢出过程及合并的过程中,
都要调用Partitioner进行分区和针对key进行排序。- ReduceTask根据自己的分区号,去各个MapTask机器上取相应的结果分区数据
- ReduceTask会取到同一个分区的来自不同MapTask的结果文件,ReduceTask会将这些文件再进行合并(归并排序)
- 合并成大文件后,Shuffle的过程也就结束了,后面进入ReduceTask的逻辑运算过程(从文件中取出一个一个的键值对Group,调用用户自定义的reduce()方法)
注意:Shuffle中的缓冲区大小会影响到MapReduce程序的执行效率,原则上说,缓冲区越大,磁盘io的次数越少,执行速度就越快。
缓冲区的大小可以通过参数调整:
io.sort.mb默认100M。
本文详细解析了MapReduce的工作流程,特别聚焦于Shuffle过程,包括MapTask如何收集kv对,溢出本地磁盘文件,分区与排序,以及ReduceTask如何获取并合并来自不同MapTask的数据。
2289

被折叠的 条评论
为什么被折叠?



