2023年人工智能指数已经发布,涵盖了人工智能领域,从技术绩效成就、道德进步、教育和政策趋势到经济影响、研发以及招聘和就业场景。

AI指数是斯坦福大学以人为本的人工智能研究所(HAI)的一项独立倡议,由AI指数指导委员会领导,该委员会是一个来自学术界和工业界的跨学科专家小组。它跟踪、整理、提取和可视化与人工智能相关的数据,使决策者能够采取有意义的行动,以负责任和合乎道德的方式推进人工智能的发展。
我们一起来通过学习斯坦福大学人工智能 研究院的14个图表了解最新人工智能的状态。
1:LLMs扩大规模

【详细说明某些大型模型培训成本的图表】
大型语言模型在规模和成本上不断扩大。GPT-2于2019年发布,被认为是第一个大型语言模型,有15亿个参数,训练成本估计为5万美元。仅仅三年后,PaLM就推出了5400亿个参数,估计耗资800万美元。不仅仅是PaLM:总体而言,大型语言和多模式模型正变得越来越大、越来越昂贵。(由于这些是估计值,我们将其分为中等、高或低:中等,即估计值被认为是中等估计值,高,即估计过高,低,即估计过低。)
2:需要新的基准

【显示技术性能基准改进的图表】
在技术方面,当前的人工智能工具不断达到或超过基准。虽然我们去年看到了基准饱和,但今年的趋势要明显得多。这表明,人工智能系统在较旧的基准测试中的能力越来越强,需要更困难的测试才能完全受到挑战。(从AI指数指导委员会成员Vanessa Parli那里了解更多关于基准饱和度的信息。)
3:培训的高昂环境成本

【一张比较各种大型车型以及汽车、飞机旅行和每年人类使用的二氧化碳排放量的图表】
大型模型通过模型中的大量参数、数据中心的电力使用效率,甚至电网效率,排放出大量的碳排放量。到目前为止,碳排放量最大的是GPT-3,但即使是相对高效的BLOOM也需要433兆瓦时的电力来训练,这足以为美国普通家庭供电41年。
4:更多的AI,更多的问题

【上图显示人工智能争议严重上升】
根据人工智能、算法和自动化事件和争议库的数据,2021年报告的问题比2012年多26倍。将其归结为人工智能使用的增加和对其滥用的日益认识。其中一些报道的问题包括乌克兰总统弗拉基米尔·泽连斯基投降的深度伪造,试图追踪帮派成员并评估其风险的面部识别技术,以及扫描和确定课堂上学生情绪状态的监控技术。
5:更多伦理相关论文

图表显示提交给公平、问责和透明度会议的论文数量大幅上升
公平、问责和透明度会议(FAccT)的提交量从2021年到2022年增加了一倍,自2018年以来增加了10倍。这表明人们对人工智能伦理和相关工作的兴趣日益浓厚。学术机构主导着FAccT,但在过去的一年里,行业参与者在这一领域做出了比以往任何时候都多的贡献。
6:人工智能劳动力需求增加

图表显示了美国人工智能职位占所有职位的百分比。
今年,所有行业寻求人工智能技能的招聘岗位都有所增加,2022年人工智能招聘岗位的总数明显高于上一年。信息部门占主导地位。到目前为止,加利福尼亚州发布的与人工智能相关的工作最多(142154个),其次是德克萨斯州(66624个)和纽约州(43899个)。
7:企业投资从2021年的高点回落

【图表显示,全球企业对人工智能的投资在2022年有所下降,但总体上有所上升】
2022年,企业投资(并购、少数股权、私人投资和公开发行)从2021年的高点有所下降,但在过去十年中,这一数字仍增长了13倍。今年最大的投资事件是收购Nuance Communications;微软以197亿美元收购了这家计算机软件技术公司。
8:中国机器人热潮

【上图表显示了中国和世界其他地区的机器人安装情况,其中中国超过了所有其他国家的总和】
全球机器人安装量增长了31%,但没有一个国家像中国那样优先考虑机器人的整合。2013年,中国超过日本成为安装工业机器人最多的国家,自那以后,这一差距只会扩大。2021年,中国安装的机器人数量超过了世界其他地区的总和,如今,中国占所有工业机器人安装量的51.8%。
9:产业吸引人才,政府滞后

【上图表显示了新的人工智能博士的就业情况,更多的人流向工业界,而不是学术界和政府】
当新毕业的人工智能博士离开学校时,大多数人都会进入行业工作。进入政府的新博士人数仅占0.7%,在过去五年中相对没有变化。
10:更多国家通过人工智能相关立法

【上图显示,全球与人工智能相关的法律数量继续缓慢增长】
去年,127个国家的立法机构通过了37项法律,其中包括“人工智能”一词。美国位居榜首,通过了9项法律,其次是西班牙(5项)和菲律宾(4项)。法案包括菲律宾的一项讨论教育改革以应对包括人工智能在内的新技术带来的挑战的法案,西班牙的一项侧重于人工智能算法中的非歧视和问责制的法案,以及通过美国管理和预算办公室建立人工智能培训计划的法案。自2016年以来,各国已通过123项与人工智能相关的法案,其中大多数是近年来通过的。
11:美国联邦人工智能预算增加

【美国联邦人工智能(非国防)预算图表显示同比稳步增长】
美国政府继续将资金转移到人工智能研发上。在2022财年,美国政府机构为人工智能研发拨款17亿美元,比上年增长13%,比2018年增长209%。与此同时,国防部在其非机密人工智能预算请求中要求11亿美元,比上一年增加26%。
12:更多女性获得计算机科学学位

【按性别显示新CS学位的图表显示,人工智能仍然是一个男性主导的行业】
尽管人工智能(以及更广泛的STEM领域)继续与多样性作斗争,但越来越多的女性正在进入该领域。CS学士学位毕业生中女性的比例上升到22.3%,在过去十年中延续了更广泛的趋势。
13:以及更广泛的种族多样性

【按种族划分的新CS学士毕业生图表显示,白人毕业生减少,亚裔毕业生增加】
与此同时,CS单身汉的种族越来越多样化。虽然白人学生仍然占应届毕业生的大多数,但亚裔、西班牙裔或多种族应届毕业生的比例在过去十年中稳步上升。
14:更多的女性教师

【北美按性别分列的新CS、CE和信息学院招聘人数显示,女性招聘人数略有上升】
另一个积极的趋势是,越来越多的女性被聘为CS、CE和信息学院的教师。尽管北美大学的教职员工仍然严重偏向男性,但女性比例现已达到30.2%的新高,比2015年上升了约8.5%。

199

被折叠的 条评论
为什么被折叠?



