远程项目调试-informer2020

informer2020

     Informer: Beyond Efficient Transformer for Long Sequence Time-Series Forecasting(原文)

Informer 是一个基于Transformer的模型,是为了应对长依赖关系而开发的。本文的主要主题是序列预测。序列预测可以在任何具有不断变化的数据的地方找到,例如股票市场等。尽管人工智能在大多数现实世界应用中都至关重要,但这并不容易;事实上,它需要一个具有高预测能力的稳健模型,可以捕捉长期依赖关系
在这里插入图片描述

图 1. (a) LSTF 可以覆盖比短序列预测更长的时间段,这对政策规划和投资保护至关重要。 (b) 现有方法的预测能力限制了 LSTF 的性能。 例如,从长度 = 48 开始,MSE 上升到不可接受的高水平,推理速度迅速下降
Transformer被认为是深度学习时代的革命性技术,它使预测更加可靠和准确。然而,Transformer 也存在一些问题,导致它们无法直接应用于长序列时间序列预测 (LSTF),例如二次时间复杂度、高内存使用率以及编码器-解码器架构的固有限制。这导致开发一种基于 Transformer 的高效模型,称为Informer。在本文中,我将详细展示此 Informer 所取得的进展。 ## Transformer

首先,让我对 Transformers 做一个总结,以防你不了解它。(对于那些熟悉 Transformers 的人,你可以跳过本节)

Transformer 是一种新兴的深度学习模型,其出现的频率正在不断上升。它们采用了自注意力机制,在 NLP 和计算机视觉等具有挑战性的任务中表现出了模型性能的显著提升。Transformer 架构可以分为两个部分,即编码器和解码器,如下图 :<ce

图 2. Transformer 架构

Transformer 的重点在于其不受局部性限制;也就是说,与其他流行模型(如 CNN)相比,Transformer 不受局部性限制。此外,我们没有在 Transformer 中提出任何 CNN 架构;相反,我们在 Transformer 中使用基于注意力机制的结构,这使我们能够获得更好的结果。

注意力机制架构可以概括为图 3:
在这里插入图片描述

图 3.(左)缩放点积注意力机制。(右)多头注意力机制由多个并行运行的注意力层组成
Scaled Dot-Product Attention 的函数为 Eq. 1

在这里插入图片描述

式1

Q(查询)、K(键)和V(向量)是我们注意力的输入。

有关 transformer 的完整基本实现,可以查阅相关论文。下面开始介绍informer

Informer 架构

ProbSparse自注意力机制:
在这个通知器中,我们不使用公式 1,而是使用公式 2,让每个键只关注u 个主要查询:
在这里插入图片描述

式2

在这里插入图片描述

式3
## Informer 架构

编码器:在内存使用限制下处理较长的序列输入

编码器的设计方式是提取长序列输入的鲁棒长程依赖关系。图 4 显示了编码器的示意架构:
在这里插入图片描述

图 4. Informer 编码器中的单个堆栈。(1)水平堆栈代表图 5 中的单个编码器副本。(2)所示的堆栈是接收整个输入序列的主堆栈。然后,第二个堆栈取输入的一半切片,后续堆栈重复(3)红色层是点积矩阵,它们通过在每一层上应用自注意力提取来实现级联减少。(4)将所有堆栈的特征图连接起来作为编码器的输出
``由于ProbSparse自注意力机制的存在,编码器的特征图上出现了额外的V值组合。蒸馏操作用于对具有主导特征的优秀组合进行评分,并在下一层构建集中的自注意力特征图。

从图4可以看出,该结构由多个Attention块、Conv1d和MaxPooling层组成,用于对输入数据进行编码。通过将输入分成两半来构建主堆栈的副本,​​可以提高蒸馏操作的可靠性。此外,自注意力蒸馏层的数量不断减少。在编码器的末端,研究人员连接了Feature Map,将编码器的输出引导至解码器

class ConvLayer(nn.Module):
    def __init__(self, c_in):
        super(ConvLayer, self).__init__()
        padding = 1 if torch.__version__>='1.5.0' else 2
        self.downConv = nn.Conv1d(in_channels=c_in,out_channels=c_in,kernel_size=3,padding=padding,padding_mode='circular')
        self.norm = nn.BatchNorm1d(c_in)
        self.activation = nn.ELU()
        self.maxPool = nn.MaxPool1d(kernel_size=3, stride=2, padding=1)

    def forward(self, x):
        x = self.downConv(x.permute(0, 2, 1))
        x = self.norm(x)
        x = self.activation(x)
        x = self.maxPool(x)
        x = x.transpose(1,2)
        return x

class EncoderLayer(nn.Module):
    def __init__(self, attention, d_model, d_ff=None, dropout=0.1, activation="relu"):
        super(EncoderLayer, self).__init__()d_ff = d_ff or 4*d_model
        self.attention = attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, attn_mask=None):
        new_x, attn = self.attention(x, x, x,attn_mask = attn_mask)
        x = x + self.dropout(new_x)
        y = x = self.norm1(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))
        y = self.dropout(self.conv2(y).transpose(-1,1))
        return self.norm2(x+y), attn

class Encoder(nn.Module):
    def __init__(self, attn_layers, conv_layers=None, norm_layer=None):
        super(Encoder, self).__init__()
        self.attn_layers = nn.ModuleList(attn_layers)
        self.conv_layers = nn.ModuleList(conv_layers) if conv_layers is not None else None
        self.norm = norm_layer

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        attns = []
        if self.conv_layers is not None:
            for attn_layer, conv_layer in zip(self.attn_layers, self.conv_layers):
                x, attn = attn_layer(x, attn_mask=attn_mask)
                x = conv_layer(x)
                attns.append(attn)
            x, attn = self.attn_layers[-1](x, attn_mask=attn_mask)
            attns.append(attn)
        else:
            for attn_layer in self.attn_layers:
                x, attn = attn_layer(x, attn_mask=attn_mask)
                attns.append(attn)
        if self.norm is not None:
            x = self.norm(x)
        return x, attns

class EncoderStack(nn.Module):
    def __init__(self, encoders, inp_lens):
        super(EncoderStack, self).__init__()
        self.encoders = nn.ModuleList(encoders)
        self.inp_lens = inp_lens

    def forward(self, x, attn_mask=None):
        # x [B, L, D]
        x_stack = []; attns = []
        for i_len, encoder in zip(self.inp_lens, self.encoders):
            inp_len = x.shape[1]//(2**i_len)
            x_s, attn = encoder(x[:, -inp_len:, :])
            x_stack.append(x_s); attns.append(attn)
        x_stack = torch.cat(x_stack, -2)
        
        return x_stack,attns

Informer 架构

解码器:通过一个前向过程生成长序列输出

解码器结构并不复杂;它是标准解码器结构。它包括两个相同的多头注意力层的堆栈。但是,生成推理的提出是为了缓解长预测中的速度下降,如图 5 所示:
在这里插入图片描述

图 5. Informer 模型概览。左图:编码器接收大量长序列输入(绿色系列)。我们用提出的ProbSparse注意力机制取代了规范的自注意力机制。蓝色梯形是自注意力提炼操作,用于提取主导注意力,从而大幅减小网络规模。层堆叠副本可提高鲁棒性。右图:解码器接收长序列输入,将目标元素填充为零,测量特征图的加权注意力组成,并立即以生成式预测输出元素(橙色系列)
解码器的馈送方式是通过获得以下方程(等式 4):

在这里插入图片描述

式4
我们不采用特定的标志作为标记,而是在输入序列中采样一个长度为 L(token) 的序列,就像输出序列之前的早期切片一样。
class DecoderLayer(nn.Module):
    def __init__(self, self_attention, cross_attention, d_model, d_ff=None,dropout=0.1, activation="relu"):
        super(DecoderLayer, self).__init__()
        d_ff = d_ff or 4*d_model
        self.self_attention = self_attention
        self.cross_attention = cross_attention
        self.conv1 = nn.Conv1d(in_channels=d_model, out_channels=d_ff, kernel_size=1)
        self.conv2 = nn.Conv1d(in_channels=d_ff, out_channels=d_model, kernel_size=1)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)
        self.activation = F.relu if activation == "relu" else F.gelu

    def forward(self, x, cross, x_mask=None, cross_mask=None):
        x = x + self.dropout(self.self_attention(x, x, x,attn_mask=x_mask)[0])
        x = self.norm1(x)
        x = x + self.dropout(self.cross_attention(x, cross, cross,attn_mask=cross_mask)[0])
        
        y = x = self.norm2(x)
        y = self.dropout(self.activation(self.conv1(y.transpose(-1,1))))
        y = self.dropout(self.conv2(y).transpose(-1,1))
        return self.norm3(x+y)

class Decoder(nn.Module):
    def __init__(self, layers, norm_layer=None):
        super(Decoder, self).__init__()
        self.layers = nn.ModuleList(layers)
        self.norm = norm_layer
    def forward(self, x, cross, x_mask=None, cross_mask=None):
        for layer in self.layers:
            x = layer(x, cross, x_mask=x_mask, cross_mask=cross_mask)
        if self.norm is not None:
            x = self.norm(x)
        return x

接下来是代码调试过程

主要就是安装环境,数据集,如果数据集不是用项目提供的数据集,可能还要经过一些处理,最好是处理成跟提供的数据集类似的,这样是最快的,当然也可以改代码来适应自己的数据集
还有就是当自己的数据集出现效果不好,指标差的情况,可以调整参数,多次训练。可以改变三个重要的长度参数:延长输入长度(48、96、168、240、336、480、624、720)、编码器输入长度(78、96、168、240、480、624、720)和编码器输入长度(96、168、240、336、480、720)
还有就是学习率和batch_size的调整。

运行方法

首先使用git命名将项目下载到本地
命令为git clone:
git clone https://github.com/zhouhaoyi/Informer2020.git
后面这个连接地址取得的方法:搜索Informer2020,点code,复制出现的链接,右边有复制按钮
然后cd Informer2020, cd是进入该目录,使用git clone命令会将项目下载到 Informer2020目录。
接下来需要创建虚拟环境,我使用的是conda来创建虚拟环境,命令为:
conda create -n informer python=3.8,然后输入y,虚拟环境即可创建完成。
infomer可以进行更改,是该虚拟环境的名称
然后激活该环境:conda activate informer
接下来要安装依赖,可以使用命令pip install -r requirements.txt,等待安装完成即可
在搭建好环境后,需要下载数据集,也可以使用自己的数据集,不过可能需要更改一些代码。
原文使用的数据集为ETT数据集,下载了数据集后,新建一个datasets目录,复制到该目录。
然后可以用vscode打开Informer2020目录,使用以下命令运行该项目:

# ETTh1
python -u main_informer.py --model informer --data ETTh1 --attn prob --freq h

# ETTh2
python -u main_informer.py --model informer --data ETTh2 --attn prob --freq h

# ETTm1
python -u main_informer.py --model informer --data ETTm1 --attn prob --freq t
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>