YOLOv5 加入 swin-transformer

本文介绍了如何将Swin Transformer整合到YOLOv5中,以提升模型性能。作者通过后归一化技术和缩放余弦注意力提高了大模型稳定性,采用对数间隔连续位置偏差技术有效地进行跨分辨率迁移。Swin Transformer的层级结构适应于密集检测任务,代码已做修改以适配YOLOv5模块,并提供了详细的配置和使用指导。
摘要由CSDN通过智能技术生成

 1.简介

论文地址:https://arxiv.org/pdf/2111.09883.pdf

作者提出了将Swin Transformer缩放到30亿个参数的技术 ,并使其能够使用高达1536×1536分辨率的图像进行训练。在很多方面达到了SOTA。

目前,视觉模型尚未像NLP语言模型那样被广泛探索,部分原因是训练和应用中的以下差异:

(1)视觉模型通常在规模上面临不稳定性问题;

(2)许多下游视觉任务需要高分辨率图像,如何有效地将低分辨率预训练的模型转换为高分辨率模型尚未被有效探索,也就是跨窗口分辨率迁移模型时性能下降。

(3)当图像分辨率较高时,GPU显存消耗也是一个问题。

解决思路:
为了解决这些问题,作者提出了几种技术,并在本文中以Swin Transformer进行了说明:

(1)提高大

根据引用\[1\]和引用\[2\]的内容,可以得知YOLOv7可以与Swin Transformer-V2结合使用。YOLOv7是YOLO系列中的一个目标检测器,而Swin Transformer-V2是一种在计算机视觉任务中取得很好效果的模型。通过将YOLOv7的骨干网络替换为Swin Transformer-V2,可以提升目标检测的性能。你可以参考引用\[1\]中提供的博文和引用\[3\]中提供的论文地址和源代码来了解更多关于YOLOv7和Swin Transformer-V2的详细信息。 #### 引用[.reference_title] - *1* [改进YOLOv7系列:28.YOLOv7 结合 Swin Transformer V2结构,Swin Transformer V2:通向视觉大模型之路](https://blog.csdn.net/qq_38668236/article/details/126735304)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *2* [YOLOv5Swin-Transformer的结合](https://blog.csdn.net/m0_67388791/article/details/130666285)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [目标检测算法——YOLOv5/YOLOv7改进之结合Swin Transformer V2(涨点神器)](https://blog.csdn.net/m0_53578855/article/details/127361280)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈子迩

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值