[Machine Learning] 图片文字识别(Application Example: Photo OCR)

在这里插入图片描述

16 Application Example: Photo OCR(图片文字识别)

16.1 Problem Description and Pipeline

图像文字识别应用所作的事是,从一张给定的图片中识别文字。这比从一份扫描文档中识别文字要复杂的多。
在这里插入图片描述
为了完成这样的工作,需要采取如下步骤:
1.文字侦测(Text detection)—— 将图片上的文字与其他环境对象分离开来
2.字符切分(Character segmentation)—— 将文字分割成一个个单一的字符
3.字符分类(Character classification)—— 确定每一个字符是什么

在这里插入图片描述

16.2 Sliding Windows

滑动窗口是一项用来从图像中抽取对象的技术。假设需要在一张图片中识别行人,首先要做的是用许多固定尺寸的图片来训练一个能够准确识别行人的模型。然后用之前训练识别行人的模型时所采用的图片尺寸在要进行行人识别的图片上进行剪裁,接着将剪裁得到的切片交给模型,让模型判断是否为行人,再在图片上滑动剪裁区域重新进行剪裁,将新剪裁的切片也交给模型进行判断,如此循环直至将图片全部检测完。一旦完成后,按比例放大剪裁的区域,再以新的尺寸对图片进行剪裁,将新剪裁的切片按比例缩小至模型所采纳的尺寸,交给模型进行判断,如此循环。
在这里插入图片描述
滑动窗口技术也被用于文字识别,首先训练模型能够区分字符与非字符,然后,运用滑动窗口技术识别字符,一旦完成了字符的识别,将识别得出的区域进行一些扩展,然后将重叠的区域进行合并。接着以宽高比作为过滤条件,过滤掉高度比宽度更大的区域(认为单词的长度通常比高度要大)。下图中绿色的区域是经过这些步骤后被认为是文字的区域,而红色的区域是被忽略的。
在这里插入图片描述
以上便是文字侦测阶段。 下一步是训练一个模型来完成将文字分割成一个个字符的任务,需要的训练集由单个字符的图片和两个相连字符之间的图片来训练模型。
在这里插入图片描述
模型训练完后,我们仍然是使用滑动窗口技术来进行字符识别。

以上便是字符切分阶段。 最后一个阶段是字符分类阶段,利用神经网络、支持向量机或者逻辑回归算法训练一个分类器即可。

16.3 Getting Lots of Data and Artificial Data

如果模型是低方差的,那么获得更多的数据用于训练模型,是能够有更好的效果的。问题在于,怎样获得数据,数据不总是可以直接获得的,有可能需要人工地创造一些数据。

以文字识别应用为例,我们可以字体网站下载各种字体,然后利用这些不同的字体配上各种不同的随机背景图片创造出一些用于训练的实例,这让我们能够获得一个无限大的训练集。这是从零开始创造实例。另一种方法是,利用已有的数据,然后对其进行修改,例如将已有的字符图片进行一些扭曲、旋转、模糊处理。只要我们认为实际数据有可能和经过这样处理后的数据类似,我们便可以用这样的方法来创造大量的数据。

有关获得更多数据的几种方法:
1.人工数据合成
2.手动收集、标记数据
3.众包

©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页