数据血缘 | 图数据库,一个绕不开的话题 本篇文章通过剖析数据血缘的挑战,展示了图数据库,尤其是**Neo4j**,如何凭借其高效的图结构模型和强大的查询能力,解决这些难题。文章涵盖了从Neo4j的基本操作到实际案例中的应用,以及如何利用Cypher查询语言直观管理数据血缘,最后分享了在实际开发中的最佳实践
数据血缘 | 探索SQLGlot的实用性与解析技巧 SQLGlot 可以让你对代码库中的 SQL 实现程序化理解。它能够创建测试和检查,以深入分析你的 SQL,并在源头识别错误或反模式。SQLGlot 提供了标准化不同数据仓库中 SQL 结构的 API,使它成为开发者的多用途工具。目前已经支持24种不同的sql语法了,就凭这个,也太值得用了。这是它的git地址,目前已经6.8K stars。
DataX实战|使用Python 构建简易的DataX数据血缘工具(二) 导读:在这篇文章中,我讨论了如何使用 conda 管理 Python 项目环境,以避免依赖冲突,然后基于 Flask 创建一个简易的 DataX 数据血缘工具。在 requirements.txt 中指定依赖,创建一个简单的 Flask 应用,以 /query 接口通过解析 DataX 的 JSON 和 SQL 配置来获取表的任务信息。核心解析逻辑放在 DataxParser 类中。开发中探讨了提高查询效率的可能性,比如提前解析并存储数据。
doris udf -- 避免使用递归CTE 在部门表里有 部门id (dept_id) 和 父部门id (parent_id) ,父部门id同时也是部门id。现在要查部门id下所有的子部门id,但是不知道部门层级,部门关系可能也会调整。
DataEase二开记录--踩坑和详细步骤(四)改admin账号密码 考虑到原来默认admin账号的密码过于简单,需要修改,但是DataEase已经使用了,不能影响原来的数据,因此不能更换镜像。相关文章,有需要的话 可以看看前面几篇DataEase二开记录–踩坑和详细步骤(一)DataEase二开记录–踩坑和详细步骤(二)DataEase二开记录–踩坑和详细步骤(三)增加权限功能。