Hadoop框架之——HDFS概述

概述

HDFS背景

随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式管理系统,HDFS只是分布式管理系统中的一种

HDSF定义

HDSF (Hadoop Distributed File System) ,它是一个文件系统,用于存储文件,通过目录树来定位角色,其次,它是分布式的,由很多服务器联合起来实现功能,集群中的服务器各有各自的角色

HDFS的使用场景:适合一次写入,多次读出的场景,且不支持文件的修改,适合用来做数据分析,并不适合用来做网盘应用

HDFS优缺点

优点

1.高容错性
(1)数据自动报存多个副本,它通过增加副本的形式,提高容错性
(2)某一个副本丢失之后,它可以自动恢复
2.适合处理大数据
(1) 数据规模:能够处理数据规模达到GB,TB , 甚至PB级别的数据;
(2)文件规模:能够处理百万规模以上的文件数量,数量相当之大
(3)可构建在廉价机器上,通过多副本机制,提高可靠性

缺点

1.不适合做低延时的数据访问,比如毫秒级的存储数据,是做不到的
2.无法高效的对大量小文件进行存储
(1)存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息,这样是不可取的,因为NameNode的内存总是有限的
(2)小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标
3.不支持并发写入,文件随即修改
(1)一个文件只能有一个写,不允许多个线程同时写
(2)仅支持数据append(追加),不支持文件的随机修改

组成架构

NameNode

是master ,它是一个主管,管理者

  • 管理HDFS的名称空间;
  • 配置副本策略;
  • 管理数据块(Block)的映射信息;
  • 处理客户端读写请求

DataNode

是slave,NameNode下达命令,DataNode执行实际的操作

  • 存储实际的数据块
  • 执行数据块的读/写操作

Client

客户端

  • 文件切分,文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后进行上传
  • 与NameNode进行交互,获取文件的位置信息
  • 与DataNode交互,读取或写入数据
  • Client提供一些命令来管理HDFS,比如NameNode格式化
  • Client可以通过一些命令来访问HDFS,比如对HDFS增删改查操作

Secondary NameNode

并非NameNode的热备,当NameNode挂掉的适合,它并不能马上替换NameNode并提供服务

  • 辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NameNode
  • 在紧急情况下,可辅助恢复NameNode

HDFS文件块大小(面试重点)

HDFS的文件在物理上是分块存储,(Block),块的大小可以通过配置参数(dfs.blocksize)来规定,默认大小在Hadoop2.x的版本中是128M,老版本是64M

  • 集群中的Block
  • 如果寻址的时间约为10ms,即找到block的时间为10ms
  • 寻址时间为传输时间的1%时,则为最佳状态,因此,传输时间 = 10ms/0.01=1000ms =1s
  • 而目前磁盘的传输速率普遍为100MB/S
  • block大小 = 1s * 100MB = 100MB

思考:为什么块的大小不能设置太小,也不能设置太大?

  • HDFS的快设置太小,会增加寻址时间,程序一直在找块的开始位置
  • 如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始所需的时间,导致程序在处理这块数据的时候,会非常慢

总结:HDFS块的大小设置主要取决于磁盘传输速率

©️2020 CSDN 皮肤主题: 黑客帝国 设计师:上身试试 返回首页