【高等数学】二.一元函数微分学

本文深入探讨了微积分中的导数与微分概念,包括不同类型的导数计算方法及其几何意义,介绍了中值定理的应用及微分方程的解决策略。此外,还详细讲解了如何利用这些工具来分析函数的极值、凹凸性和拐点等问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

导数和微分

计算导数:
1.定义法
2.求导公式
3.通过微分求倒数

2.1 导数类型

  1. 一般导数
  2. 复合函数求导
  3. 隐函数求导
  4. 反函数求导
    x y ′ = 1 y x ′ ; x y y ′ ′ = − y x x ′ ′ ( y x ′ ) 3 x'_y=\frac{1}{y'_x};x''_{yy}=\frac{-y''_{xx}}{(y'_x)^3} xy=yx1;xyy=(yx)3yxx
  5. 分段函数求导
    在分段点用导数定义求导
    在连续点用
  6. 多项乘除、开方乘方
    1.等式两边取对数,可以是视绝对值而不见
  7. 高阶求导
    1.归纳法
    2.莱布尼茨公式: ( u ( n ) ± v ( n ) ) = u ( n ) ± v ( n ) (u^{(n)}\pm v^{(n)})=u^{(n)}\pm v^{(n)} (u(n)±v(n))=u(n)±v(n)
    ( u v ) ( n ) = u ( n ) + C n 1 u ( n − 1 ) v + C n 2 u ( n − 2 ) v + . . . + C n n − 1 u v ( n − 1 ) + v ( n ) (uv)^{(n)}=u^{(n)}+C^1_nu^{(n-1)}v+C^2_nu^{(n-2)}v+...+C^{n-1}_nuv^{(n-1)}+v^{(n)} (uv)(n)=u(n)+Cn1u(n1)v+Cn2u(n2)v+...+Cnn1uv(n1)+v(n)
    3.高阶导数
    写抽象展开和具体展开,然后用函数值唯一性使得两式相等

TIPS:

  • ( u v ) ′ = u ′ v + v ′ u (uv)'=u'v+v'u (uv)=uv+vu仅在u和v导数均存在的情况下成立
  • 进行高阶求导的时候,可以通过函数的奇偶性快速求导
  • l n f ( x ) lnf(x) lnf(x)要视绝对值而不见

2.2 微分几何性质

  1. 极值的必要条件
  2. 极值的第一\第二\第三充分条件
  3. 凹凸性
    定义: λ 1 f ( x 1 ) + λ 2 f ( x 2 ) > f ( λ 1 x 1 + λ 2 x 2 ) \lambda_1f(x_1)+\lambda_2f(x_2)>f(\lambda_1x_1+\lambda_2x_2) λ1f(x1)+λ2f(x2)>f(λ1x1+λ2x2)
    f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})<\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)
    判别凹凸性的充分条件
  4. 拐点
    连续曲线的凹弧和凸弧的分界点成为拐点
    拐点的必要条件
    拐点的第一\第二\第三充分条件
  5. 渐近线
  6. 最值
    闭区间求领域:比较区间内极值点和区间端点
    开区间求领域:比较区间内极值点和两侧极限
  7. 曲率
    k = ∣ y ′ ′ ∣ [ 1 + ( y ′ ) 2 ] 3 2 , R = 1 k k=\frac{|y''|}{[1+(y')^2]^{\frac{3}{2}}},R=\frac{1}{k} k=[1+(y)2]23y,R=k1

tips:

  • 截距不是距离,可负
  • 凹凸性的判别 f ( x 1 + x 2 2 ) < f ( x 1 ) + f ( x 2 ) 2 f(\frac{x_1+x_2}{2})<\frac{f(x_1)+f(x_2)}{2} f(2x1+x2)<2f(x1)+f(x2)可以结合中值定理考察
  • f’(x0)>0无法推导出函数领域单调增,因为导数可能并不连续,在x0处恰好是跳跃间断点,但是在二阶可导或一阶连续的条件下可以推出。
  • 对于判别某点和其领域的关系,可以多点考虑间断点情况

中值定理和微分等式

1.中值定理

定理

作用范围定理
函数相关有界和最值定理、界值定理、平均值定理、零点定理
微分相关费马定理、罗尔定理、拉格朗日、柯西中值定理
泰勒公式:皮亚诺余项、拉格朗日余项
积分中值定理

方法

  1. 确定区间
    养成个好习惯
  2. 确定辅助函数
    (1)直接用f(x)
    (2)求导公式 ( u v ) ′ = u ′ v + u v ′ (uv)'=u'v+uv' (uv)=uv+uv的妙用
    (3)对于类似 f ′ ′ ( x ) + 2 f ′ ( x ) + f ( x ) f''(x)+2f'(x)+f(x) f(x)+2f(x)+f(x)构造辅助函数 [ e x f ( x ) ] ′ ′ [e^xf(x)]'' [exf(x)]
    (4)对于 f ′ ( x ) + f ( x ) ψ ( x ) ′ f'(x)+f(x)\psi(x)' f(x)+f(x)ψ(x),构造 f ( x ) e ψ ( x ) f(x)e^{\psi(x)} f(x)eψ(x)
    对于类似 f ′ ( x ) x − f ( x ) f'(x)x-f(x) f(x)xf(x)构造 f ( x ) x \frac{f(x)}{x} xf(x)函数
  3. 确定使用的定理
    (1)零点定理
    (2)介值定理
    (3)费马定理
    (4)罗尔定理

TIPS:

  • 找零点时,可以通过找到零点最多可能存在个数和零点最少可能存在个数从而确定零点个数
  • 特殊的中值定理应用:将 l n ( f ( x ) g ( x ) ln(\frac{f(x)}{g(x)} ln(g(x)f(x)化作 l n f ( x ) − l n g ( x ) lnf(x)-lng(x) lnf(x)lng(x)可以使用中值定理

2.微分等式问题

题型

1.寻找交点
1.求导函数获取函数导数信息
2.根据导函数分析极大极小值,并且一定要留意导数和原函数趋向于无穷的值以及是否有间断点(强化18讲例题6.17)

3.微分不等式问题

几大思考方向:

  1. 单调性
  2. 最值
  3. 凹凸性
  4. 中值定理
  5. 泰勒公式

微分不等式有时候式子中不含x,需要自己进行函数化。此时此刻记得抓住关键点来讨论和函数化就好。

补充

各种不同的点:
极值点:点左右两侧的导数异号,不要求导数连续
拐点:指改变曲线向上或向下方向的点,和函数二阶导有关。如果f’‘(x)=0,或者在点的两侧f’'(x)异号,则该点为拐点
驻点:函数的一阶导数为0的点,和极值点的区别主要在于驻点要求导数连续,区分的例子就是y=|x|在x=0处为极值点,但是不是驻点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值