作为全球首个联邦学习工业级技术框架,FATE支持联邦学习架构体系与各种机器学习算法的安全计算,实现了基于同态加密和多方计算(MPC)的安全计算协议,能够帮助多个组织机构在符合数据安全和政府法规前提下,有效和协作地进行数据使用和联合建模。
8月18日,FATE 1.0版本正式发布,重点推出了联邦建模可视化工具FATABoard,以及联邦学习建模pipeline调度和生命周期管理工具FATEFlow,并对FederatedML进行了重大升级。
该项目已发布在github:https://github.com/webankfintech/fate。
FATEBoard:简单高效,联邦学习建模过程可视化
FATEBoard是联邦学习建模的可视化工具,为终端用户可视化和度量模型训练的全过程,帮助用户更简单而高效地进行模型探索和模型理解。
FATEBoard由任务仪表盘、任务可视化、任务管理与日志管理等模块组成,支持模型训练过程全流程的跟踪、统计和监控等,并为模型运行状态、模型输出、日志追踪等提供了丰富的可视化呈现。
FATEBoard可大大增强联邦建模的操作体验,让联邦建模更易于理解与实施,有利于建模人员持续对模型探索与优化。


最低0.47元/天 解锁文章
181

被折叠的 条评论
为什么被折叠?



