- 博客(83)
- 收藏
- 关注
转载 重大突破!异构联邦学习系统首次实现互联互通
摘要日前,在北京金融科技产业联盟的组织下,结合中国工商银行、交通银行、中国农业银行、中国银联等头部金融机构在使用联邦学习的实际场景需要,微众银行AI团队和富数科技隐私计算团队联手破解了不同联邦学习平台之间互联的技术难题,在行业内第一次实现了异构联邦学习平台的互通。这次互联互通实验,初步验证了正在制定中的联邦学习技术互联互通技术标准的可行性,是隐私计算技术发展史上一次里程碑式的突破,必将进一步推动联邦学习等隐私计算技术在不同行业的快速应用,助力数据价值充分释放。科技创新过...
2021-04-16 14:08:05
379
原创 【征稿】IJCAI 2021联邦学习与迁移学习国际研讨会
数字时代,隐私和安全正成为一个关键问题。公司和组织每天都在收集大量的数据,然而数据隐私保护相关法律法规越来越严格,给大数据和人工智能带来了新的挑战。例如欧盟的《通用数据保护条例》(General data Protection Regulation,GDPR)就明确提出,禁止在没有明确用户授权的情况下,直接合并来自不同来源的用户数据进行AI建模。为了探索AI如何适应这种新的监管环境,微众银行、京东、第四范式等中国企业联合香港科技大学、新加坡南洋理工大学、普林斯顿大学等国际知名高校及科研院所,将...
2021-04-09 17:21:39
482
原创 干货速看 | FATE首届圆桌会,专家团深度揭秘1.4版本
6月3日,咱们FATE开源社区首届圆桌会完美落幕。这场圆桌会上,我们邀请了40+位社区朋友,他们有的是踊跃帮助其他人解决技术问题的“热心群众”,有的已经把联邦学习应用于生产环境的FATE成为生产力工具的人。在这场圆桌会上,首先由咱们FATE 内部专家团队对FATE 1.4新版本的各模块功能点进行简介说明,并对大家遇到的一些问题进行交流解答,以下为专家分享主题&大纲(PPT可添加FATE社区助手获取):FATE:1.4更新简介1、横向SecureBoost树2、早停机制(Early S
2020-06-12 16:46:33
699
转载 FATE v1.4版本来袭:使用体验大幅提升,多模块迎来全方位优化,更有Eggroll喜迎新版本支持
引文:如何在保证本地训练数据不公开的前提下,实现多个数据拥有者协同训练一个共享的机器学习模型?传统的机器学习方法需要将所有的数据集中到一个地方(例如数据中心),然后进行机器学习模型的训练。但这种基于集中数据的做法无疑会严重侵害用户隐私和数据安全。如今,世界上越来越多的人开始强烈要求科技公司必须根据用户隐私法律法规妥善地处理用户的数据,欧盟的《通用数据保护条例》是一个很好的例子。而联邦学习这门技术,则可以将分布式机器学习、密码学、基于金融规则的激励机制和博弈论结合起来,从而解决分散数据的使用问题。FATE
2020-06-05 15:00:02
747
原创 “羊吃草”论数据隐私保护难题破解之道? 世界第一本联邦学习专著问世
看到这本书的封面插画,你是否以为即将面对一本童话故事书?实际上,这本书“意义重大”,绝非童话,是用“羊吃草”的比喻给我们解释:大数据时代,人工智能在隐私安全前提下实现数据合作的最优解决方案。这就是世界上第一本“联邦学习”专著——《Federated Learning》(英文版)/《联邦学习》(中文版),由微众银行首席人工智能官杨强教授及人工智能部刘洋、程勇、康焱、陈天健、于涵等多位人工智能领域顶级专家历时两年,共同编撰而成。2019年12月,《Federated Learning》由美国Morgan
2020-05-15 14:32:11
1139
原创 使用FATE进行图片识别的深度神经网络联邦学习
FATE(Federated AI Technology Enabler)是联邦机器学习技术的一个框架,其旨在提供安全的计算框架来支持联邦 AI 生态。FATE 实现了基于同态加密和多方计算(MPC)的安全计算协议,它支持联邦学习架构和各种机器学习算法的安全计算,包括逻辑回归、基于树的算法、深度学习和转移学习。联邦机器学习又名联邦学习、联合学习与联盟学习,它能有效帮助多个机构在满足...
2020-04-21 19:21:53
1902
原创 干货|杨强教授联邦学习公开课视频及问答整理
4月13日,咱们微众银行首席人工智能官杨强教授也做客雷锋网,结合最新发布的《联邦学习白皮书v2.0》,对联邦学习研究与应用价值展开了最前沿的讨论和分享。这是雷锋网《金融联邦学习公开课》第一期。这一系列课程将为金融界和人工智能界,输出最前沿、最具实用价值的联邦学习线上系列课。作为当前人工智能尤其是AI金融领域,最受工业界和学术界关注的研究方向之一。联邦学习有哪些前沿研究与应用?欢迎戳下方视...
2020-04-21 19:19:10
3874
2
原创 使用KubeFATE快速部署联邦学习实验开发环境(二)
概述在前面的文章中(点我前往阅读),我们介绍过如何使用KubeFATE来部署一个单节点的FATE联邦学习集群。在真实的应用场景中,联邦学习往往需要多个参与方联合起来一起完成任务。基于此,本文将讲述如何通过KubeFATE和Docker-Compose来部署两个参与方的FATE集群,并在集群上运行一些简单的测试以验证其功能的完整性。FATE集群的组网方式联邦学习的训练任务需要多方参与,...
2020-04-10 16:24:47
1492
2
原创 数据孤岛难倒AI落地金融业?微众银行用联邦学习和GPU这样破局
近两年,越来越多企业在思考如何应用人工智能(AI)挖掘更多数据价值。然而训练AI需要大量数据,这些数据却越来越难获得。即便是信息化起步早、数据丰富的金融业,同样饱受高质量数据缺失的困扰。金融业看似数据多,实则许多数据未经专业标注,有效数据非常少,大量数据的控制权分散在不同机构、部门,“数据孤岛”问题严重,加之数据隐私保护立法日趋严苛,数据交换与共享受到重重限制。高度智能化和高度隐私安全...
2020-04-03 14:21:23
1778
原创 使用KubeFATE快速部署联邦学习实验开发环境(一)
概述:FATE(Federated AI Technology Enabler)是一个联邦学习框架,能有效帮助多个机构在满足用户隐私保护、数据安全和政府法规的要求下,进行数据使用和建模。但由于其系统的分布式特性,导致使用存在一定门槛。鉴于此,微众银行联合VMware一起开发了KubeFATE项目,致力于降低FATE的使用门槛和系统运维成本。本文将首先分析FATE的整体架构,帮助读者理解各部件的作用...
2020-03-31 17:58:50
3341
原创 干货 | 《联邦学习FATE入门与应用实战》第六课直播回顾!课件详情看这里
FATE是全球首个工业级的联邦学习开源框架,旨在提供安全的计算框架来支持联邦AI 生态,其在实践生产中有着丰富的应用。这个3月,微众银行与VMware以及机器之心联合开展了主题为《联邦学习FATE入门与应用实战》的课程,用4周6节课的时间帮助大家在较短周期内完成联邦学习从学到用的全过程。【联邦学习FATE课程第六期】联邦推荐算法及其应用以上为第六期课程《联邦学习...
2020-03-27 17:59:29
683
原创 预告 | 联邦学习进阶最后一课:联邦学习推荐算法及其应用
3月24日,微众银行联合VMware及机器之心开设的公开课《联邦学习FATE入门与应用实战》第五讲结课,微众银行人工智能部系统架构师曾纪策为大家介绍了FATE的整体架构、系统关键数据流以及如何实践。第五讲回顾视频:【联邦学习FATE课程第五期】FATE整体架构介绍与系统实践3 月 26 日(周四),我们将迎来本系列公开课最后一讲,详情如下:公开课第6...
2020-03-26 17:21:57
1076
原创 干货 | 《联邦学习FATE入门与应用实战》第五课直播回顾!课件详情看这里
FATE是全球首个工业级的联邦学习开源框架,旨在提供安全的计算框架来支持联邦 AI 生态,其在实践生产中有着丰富的应用。这个3月,微众银行与VMware以及机器之心联合开展了主题为《联邦学习FATE入门与应用实战》的课程,用4周6节课的时间帮助大家在较短周期内完成联邦学习从学到用的全过程。【联邦学习FATE课程第五期】FATE整体架构介绍与系统实践以上为第五期课程《FATE...
2020-03-26 17:19:57
845
原创 预告 | 联邦学习进阶:FATE系统实践与联邦推荐算法
3 月 19 日,微众银行联合VMware及机器之心开设的公开课《联邦学习 FATE 入门与应用实战》第四讲结课,VMware CTO 办公室资深研究员彭麟为大家介绍了使用 KubeFATE 部署生产环境的联邦学习 Kubernetes 集群。第四讲回顾视频:【联邦学习FATE课程第四期】使用KubeFATE部署生产环境的联邦学习本周,我们将迎来本系列公开课的第 5 讲和第 6 ...
2020-03-23 17:57:56
804
原创 干货 | 《联邦学习FATE入门与应用实战》第四课直播回顾!课件详情看这里
FATE是全球首个工业级的联邦学习开源框架,旨在提供安全的计算框架来支持联邦 AI 生态,其在实践生产中有着丰富的应用。这个3月,微众银行与VMware以及机器之心联合开展了主题为《联邦学习FATE入门与应用实战》的课程,用4周6节课的时间帮助大家在较短周期内完成联邦学习从学到用的全过程。【联邦学习FATE课程第四期】使用KubeFATE部署生产环境的联邦学习以上为第四期课程...
2020-03-20 17:32:37
711
原创 对金融领域而言,联邦学习的实际价值是如何体现的?
导语:近两年,联邦学习技术发展迅速。作为分布式的机器学习范式,联邦学习能够有效解决数据孤岛问题,让参与方在不共享数据的基础上联合建模,从技术上打破数据孤岛。但是,目前这一技术在很多企业落地遇到了困难,InfoQ将通过选题的方式逐一介绍各大公司如何在金融领域落地实践该技术。在人工智能领域,技术实践,尤其是大规模落地是所有开发者高度关注的话题。然而,在实际的落地过程中,总是面临着各种问题。仅仅是...
2020-03-18 13:48:36
1192
原创 干货 | 《联邦学习FATE入门与应用实战》第二课直播回顾!课件详情看这里
FATE是全球首个工业级的联邦学习开源框架,旨在提供安全的计算框架来支持联邦 AI 生态,其在实践生产中有着丰富的应用。这个3月,微众银行与VMware以及机器之心联合开展了主题为《联邦学习FATE入门与应用实战》的课程,用4周6节课的时间帮助大家在较短周期内完成联邦学习从学到用的全过程。【联邦学习FATE课程第二期】快速部署FATE开发环境以上为第二期课程《FATE 的部署模型以...
2020-03-13 16:54:03
685
原创 联邦学习首个工业级框架FATE v1.3来了!首度增加联邦推荐算法,更有KubeFATE重构“新体验”
前言抗疫战场上的好消息不断传来,关于“数据免疫力”的话题也不断升温。如同人体需要提升自身免疫能力以抵抗人际接触中的潜在病毒威胁,企业和个人用户数据如何提高“免疫能力”,在越来越广泛的行业应用与合作中提升自身数据安全和防御能力?近来以破竹之势兴起的“联邦学习”进入行业视野。联邦学习在符合数据安全和政策法规的前提下,帮助各行各业实现13多方协作训练AI。FATE(Federated AI Tech...
2020-03-13 16:41:45
618
原创 《联邦学习FATE入门与应用实战》第1讲:联邦学习技术介绍、应用和FATE开源框架(视频回放与精选问答)
人工智能广泛应用在各个行业,相应开发者群体也变得丰富多样。他们往往来自不同专业,在不同领域不同场景下进行开发实践,这也造成了 AI 开发者人才的学习成本很高,在专业技能的学习之外还需要理解产业需求和应用场景。为此,机器之心发起「AI开发者成长计划」,联合人工智能领军企业共同制定主题课程和项目实践,帮助开发者在较短周期内完成从学到用的全过程。「AI开发者成长计划」首期公开课由机器之心与微众银行联合...
2020-03-09 17:47:16
1991
原创 限免 | 10000+人期待的联邦学习课程来了!0基础快速入门上手FATE
随着用户数据安全和隐私保护相关政策相继出台,企业在给用户提供更好的创新服务时也面临着数据安全和用户隐私的问题。而联邦学习则能够帮助企业在符合数据安全和政策法规的前提下,持续更好地输出创新服务,提升服务质量。目前,联邦学习技术已在金融风控、医疗健康、智能城市、智慧零售及云服务等多个行业、领域实现了应用落地,未来应用范围势必将更为广泛。因此,了解这门技术,将有助于开发者在逐步规范化的大数据环境下,更...
2020-02-21 14:23:34
363
原创 IBM与微众银行联合举办联邦学习研讨会
纽约当地时间2月6日,IBM与微众银行在IBM T.J.Watson研究中心总部联合举办联邦学习研讨会(Workshop on Federated Learning and Analytics,FL-IBM’20)。为期一天的研讨会聚集了包括IBM副总裁Bijan Davari院士、微众银行首席人工智能官杨强教授、欧洲人工智能领军人物Boi Faltings教授等百位来自IBM、Google、微众...
2020-02-07 20:45:50
654
原创 奇虎360算法专家谈联邦学习FATE开源平台:面对数据协同的首选安全方案
最近,由微众银行AI团队研发并推出的联邦学习开源框架FATE(Federated AI Technology Enabler)再次迎来了一名社区贡献者——来自奇虎360的吴攀。从FATE的面世,到贡献者激励制度的推出,数据安全行业从业者参与到开源社区建设的浪潮逐步兴起,开发者们为何将目光纷纷投向FATE?联邦学习生态又是如何深化及拓展?在采访中,这位来自安全领域的贡献者为我们做了分享,揭秘了其对开...
2020-01-17 17:47:38
561
原创 年度回顾 ︳2019年FedAI联邦学习达成了哪些成就?
AI发展到现在,能否获得量大质优的数据已成为其进一步发展的重要制约因素。在大众越来越重视隐私数据的全球趋势下,联邦学习这一能保护数据安全及隐私的技术自然越发受到关注。FedAI联邦学习作为由微众银行AI项目组发起的,旨在开发和推广数据安全和用户隐私保护下的AI技术及其应用。这一年,我们也开启了多个“”经典时刻:受邀亮相国内外各大盛会,引领联邦学习标准制定,与多家企业、机构合作共建,将这一技术带...
2020-01-17 14:41:22
1351
原创 FATE实战:腾讯高级工程师揭秘,快速离线安装kubernetes和FATE
引言:10月31日,FATE v1.1版本正式发布。在这个版本中,FATE联合VMware中国研发开放创新中心云原生实验室的团队一起搞了个“大事”——发布了KubeFATE项目,通过把FATE的所有组件用容器的形式封装,实现了使用Docker Compose或Kubernetes(Helm Charts)来部署。这则特邀分享的内容将为大家介绍,如何离线安装kubernetes和FATE。准备y...
2019-12-26 14:41:15
727
原创 FATE实战:联邦学习开源框架避坑指南
引言:作者根据自身实操经验,总结出FATE使用及研究过程中的几个细节问题,如果你也正在研究联邦学习,或使用FATE,这些“坑”可以通过这篇特邀分享解决。安装部署裸机安装storageservicecxx无法启动1.相关issue在此,点击可查看2.解决办法点击查看,下载重新编译替换即可kubefate安装,使用nfs时mysql起不来不同party,mysql挂载目录需要不...
2019-12-26 14:37:20
1470
原创 FATE实战:对比TFF,联邦学习框架FATE有何优势?这篇案例记录告诉你
引言:本文记录了FATE框架中横向和纵向联邦学习的案例使用,并与笔者近期使用过的谷歌TFF(TensorFlow-Federated)框架对比,阐述使用感受,对研究联邦学习及使用FATE的用户极有价值。1.横向联邦学习案例在本节中,以逻辑回归为例记录横向联邦学习案例使用。实验设置数据集:信用数据,位置FATE/examples/data/default_credit_homo_g...
2019-12-26 14:35:04
2868
4
原创 初学者FATE实战:部署基础问题这样解决
引言:对于初次接触FATE的用户而言,部署其是需要持续尝试的,从单机部署到集群部署,从Linux到Ubuntu,就像一座座山峰需要去“攀爬”。这篇内容从初学者角度出发,为我们展示了FATE实操过程中的一些“难点”及其解决办法,如在部署等步骤中遇到阻碍的朋友,这篇内容或许能帮到你。初次接触联邦学习是通过联邦学习白皮书和论文Secure Federated Transfer Learing开始的.随...
2019-12-26 14:28:46
1185
1
原创 FATE实战:如何在开发环境中进行集群部署?这个“坑”别踩
引言:如何快速了解FATE?通过部署实操是一个极佳的选择,通过部署过程,可以快速了解FATE框架程序结构、配置参数位置等等。这篇内容将与大家共同探讨,在开发环境中进行集群部署可能会出现的问题,以及解决办法。想要尝试部署FATE的朋友,可以作为良好参考。1. 背景前期已在MAC中单机部署了MAC,就尝试在公司开发环境中进行集群部署,以下就是对部署过程的简要记录,虽然过程中一波三折,出现了各种问题...
2019-12-25 18:52:05
968
原创 微众银行AI团队亮相NeurIPS 2019,加速普惠AI落地
12月8日至14日,国际人工智能顶级学术会议——第33届神经信息处理系统大会NeurIPS 2019 (Thirty-third Conference on Neural Information Processing Systems)于加拿大温哥华隆重召开,本届大会共计收到6743篇论文,吸引了全球1万余名专家学者共赴盛会,再次创下新纪录,会议含金量与国际影响力进一步提升。微众银行AI团队深度参与...
2019-12-17 19:41:12
526
原创 NeurIPS 2019联邦学习国际研讨会引关注,联邦学习技术应用再拓边界
标题:NeurIPS 2019联邦学习国际研讨会引关注,联邦学习技术应用再拓边界2019年12月8日-14日,第33届国际人工智能顶级会议NeurIPS 2019(Thirty-third Conference on Neural Information Processing Systems)于加拿大温哥华举行,投稿论文数量(6743篇)、参会人数(1.3万人)均创下历史新高。大会期间,微众银行...
2019-12-17 19:31:35
779
原创 NeurIPS 2019回顾来了!联邦学习+推荐场景,微众银行首创业界联邦推荐技术
2019年12月8日至12月14日,微众银行首席人工智能官杨强教授受邀参加于加拿大温哥华举办的人工智能和机器学习领域的国际顶级会议:神经信息处理系统大会(Conference and Workshop on Neural Information Processing Systems,简称NeurIPS)。在微众银行联合谷歌、卡内基梅隆大学举办的联邦学习国际研讨会上,杨强教授以《Federated...
2019-12-17 16:13:25
561
原创 联手VMware,我们将联邦学习全球首个工业级开源框架FATE送上了云平台
摘要:随着用户数据安全和隐私保护相关政策相继出台,企业在给用户提供更好的创新服务时也面临着数据安全和用户隐私的问题。而联邦学习则能够帮助企业在符合数据安全和政策法规的前提下,持续更好地输出创新服务,提升服务质量。FATE作为联邦学习全球首个工业级开源框架,支持联邦学习架构体系,为机器学习、深度学习、迁移学习提供了高性能联邦学习机制,FATE本身还支持多种多方安全计算协议,如同态加密、秘密共享、哈希...
2019-11-15 16:57:53
8129
原创 TDW 2019 | 微众银行AI能力融入系统设计 打破医疗信息化困境
2019年10月30日,第四届TDW腾讯设计周在深圳举办。作为一年一度的设计师盛会,TDW2019以“Design for Good设计向善”为主题,汇聚众多国际大咖与行业专家,分享行业前沿设计理念及应用落地,共探行业突破口,践行“设计向善”。作为计算机视觉及AI可视分析研究领域的新锐力量,微众银行AI团队受邀参会,高级研究员李权在会上分享“医疗健康行业中的设计新视野”案例(以下简称“案例”)...
2019-10-31 19:25:39
236
原创 IEEE VIS 2019 | 微众银行可视分析提升预测模型效果 助力企业数字化转型
2019年10月20日-26日, IEEE VIS 2019在加拿大温哥华举行。作为信息可视化、科学可视化及可视分析科学研究领域的重量级年度会议,IEEE VIS汇聚了来自全球高校、政府和行业的研究人员和从业人员,就可视化工具和应用的最新进展进行深入研讨与交流,共同探索大数据时代可视化与可视分析发展的方向与机遇。微众银行AI团队高级研究员李权在IEEE VIS 2019上发表文章《WeSeer:...
2019-10-30 10:38:48
683
原创 微众银行“联邦学习技术体系研究与应用”斩获“CCF科学技术奖” 或引领人工智能新方向
近日,“2019年度CCF科学技术奖”名单公布,微众银行AI团队以“联邦学习技术体系研究与应用”项目(以下简称“项目”)斩获“2019年CCF科学技术奖科技进步杰出奖”,这一奖项代表着国内计算机领域权威学术团体的认可。中国计算机学会科学技术奖是中国计算机学会(CCF)设立的计算机领域重要奖项,由CCF科学技术奖评奖委员会组织评选。旨在嘉奖计算机及相关领域在技术研究、技术开发、技术创新、推广应用先...
2019-10-09 16:45:20
264
原创 微众银行AI首席科学家2019 NeurIPS大会论文揭示“神经网络防盗最新技术”
随着深度神经网络(DNN)的快速发展,机器学习服务(MLaaS)等有潜力的商业模式迅速崛起,AI产业化进入发展快车道。然而,保护训练好的DNN模型免于被非法复制,重新分发或滥用(即知识产权侵权)是AI产业化进程中必须要面临和解决的问题。尤其是当下各国企业在深度学习模型和平台方面进行巨额研发投入,对知识产权的保护刻不容缓。没有保护的神经网络,如同不上锁的车子,谁都可以开走;一旦网络被非法拷贝及使用,...
2019-09-20 19:03:19
300
原创 Linux Foundation AI Day 聚焦“联邦学习” AI从概念到落地的关键破局点
9月17日,全球最大非盈利技术联盟和开源社区Linux基金会举办的Linux Foundation AI Day中国站在上海顺利落下帷幕。LF AI Day期间,来自微众银行、腾讯、华为等多方资深技术专家围绕“AI的应用与实践”进行了分享与讨论。“联邦学习”作为新兴的人工智能基础技术,有望成为下一代人工智能协作网络的基础,也成为了此次大会的热议话题。对此,微众银行高级研究员范涛发表了题为...
2019-09-18 20:29:45
244
原创 数据安全与自由时代何时到来?专访联邦学习全球首个工业级开源框架FATE首位一级贡献者
FATE作为联邦学习的全球首个工业级开源框架,自推出以来便受到各方关注。在1.0版本发布后更是吸引了各行各业人员的目光。FATE共建开源的愿景,使得越来越多从业者投入了开源社区的建设与贡献中。而随着贡献者激励机制的发布,近日,FATE开源社区诞生了第一位一级贡献者,其提出了“针对SecureBoost算法场景中,联邦计算分裂增益时所用的密码改进”功能。从业者中如何评价FATE?在数据安全、隐私保...
2019-09-11 11:43:57
334
原创 只看这一篇就够:快速了解联邦学习技术及应用实践
随着大数据的进一步发展,重视数据隐私和安全已经成为了世界性的趋势,同时,大多数行业数据呈现数据孤岛现象,如何在满足用户隐私保护、数据安全和政府法规的前提下,进行跨组织的数据合作是困扰人工智能从业者的一大难题。而“联邦学习”将成为解决这一行业性难题的关键技术。今天和大家分享下咱们微众银行AI团队主导的新一代联邦学习技术及应用,并详细介绍联邦学习落地的全球首个工业级开源平台—— Federated...
2019-09-09 18:21:15
31922
5
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅