快速上手百度大脑驾驶行为分析

作者:wangwei8638

针对车载场景,识别驾驶员使用手机、抽烟、不系安全带、双手离开方向盘等动作姿态,分析预警危险驾驶行为,提升行车安全性。

一.平台接入

此步骤比较简单,不多阐述。可参照之前文档:

https://ai.baidu.com/forum/topic/show/943162

二.分析接口文档

1.打开API文档页面,分析接口要求

https://ai.baidu.com/docs#/Body-API/2387dd4f

(1)接口描述

检测到驾驶员后,进一步识别行为属性,可识别使用手机、抽烟、不系安全带、双手离开方向盘、视角未朝前方5大类行为。

(2)请求说明

需要用到的信息有:

请求URL:https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior

Header格式:Content-Type:application/x-www-form-urlencoded

Body中放置请求参数,参数详情如下:
在这里插入图片描述
(3)返回参数
在这里插入图片描述
返回示例

{

     "person_num": 1,

     "person_info": [{

         "attributes": {

              "cellphone": {

                   "threshold": 0.9,

                   "score": 0.500098466873169

              },

              "both_hands_leaving_wheel": {

                   "threshold": 0.9,

                   "score": 0.468360424041748

              },

              "not_facing_front": {

                   "threshold": 0.9,

                   "score": 0.08260071277618408

              },

              "not_buckling_up": {

                   "threshold": 0.9,

                   "score": 0.998087465763092

              },

              "smoke": {

                   "threshold": 0.9,

                   "score": 6.29425048828125e-05

              }

         },

         "location": {

              "width": 483,

              "top": 5,

              "height": 238,

              "left": 8

         }

     }],

     "log_id": 2320165720061799596

}

2.获取access_token

# encoding:utf-8

import base64

import urllib

import urllib2



request_url = " https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior "

# 二进制方式打开视频文件

f = open('[本地文件]', 'rb')

img = base64.b64encode(f.read())

params = {"data": data }

params = urllib.urlencode(params)

access_token = '[调用鉴权接口获取的token]'

request_url = request_url + "?access_token=" + access_token

request = urllib2.Request(url=request_url, data=params)

request.add_header('Content-Type', 'application/x-www-form-urlencoded')

response = urllib2.urlopen(request)

content = response.read()

if content:

print content

三.识别结果

  1. 正面
    在这里插入图片描述
    识别结果:
    在这里插入图片描述
  2. 侧面
    在这里插入图片描述
    识别结果:
    在这里插入图片描述
    3.侧后方
    在这里插入图片描述
    识别结果:
    在这里插入图片描述
    结论:

识别结果方面:分别从驾驶员前方、侧方、后方几个角度拍摄的照片进行测试,识别结果比较准确。并且能够识别出同一人的多种违规行为。
四.源码共享

# -*- coding: utf-8 -*-
#!/usr/bin/env python
import urllib
import urllib.parse
import urllib.request
import base64
import json
import time
#client_id 为官网获取的AK, client_secret 为官网获取的SK
client_id = '******************'
client_secret = '**********************'

#获取token
def get_token():
    host = 'https://aip.baidubce.com/oauth/2.0/token?grant_type=client_credentials&client_id=' + client_id + '&client_secret=' + client_secret
    request = urllib.request.Request(host)
    request.add_header('Content-Type', 'application/json; charset=UTF-8')
    response = urllib.request.urlopen(request)
    token_content = response.read()
    if token_content:
        token_info = json.loads(token_content.decode("utf-8"))
        token_key = token_info['access_token']
    return token_key

     # 读取图片
def get_file_content(filePath):
    with open(filePath, 'rb') as fp:
        return fp.read()


#获取驾驶行为信息
def get_license_plate(path):

    request_url = "https://aip.baidubce.com/rest/2.0/image-classify/v1/driver_behavior"
    
    f = get_file_content(path)
    access_token=get_token()
    img = base64.b64encode(f)
    params = {"image": img}
    params = urllib.parse.urlencode(params).encode('utf-8')
    request_url = request_url + "?access_token=" + access_token
    tic = time.clock()
    request = urllib.request.Request(url=request_url, data=params)
    request.add_header('Content-Type', 'application/x-www-form-urlencoded')
    response = urllib.request.urlopen(request)
    content = response.read()
    toc = time.clock()
    print('处理时长: '+'%.2f'  %(toc - tic) +' s')
    if content:
        driver_behavior = json.loads(content.decode("utf-8"))
        strover = '识别结果:\n '
        result = driver_behavior['person_info'][0]['attributes']
        #使用手机
        score = result['cellphone']['score']
        strover += '使用手机: {} \n '.format(score)
        #抽烟
        score = result['smoke']['score']
        strover += '抽烟: {} \n '.format(score)
        #未系安全带
        score = result['not_buckling_up']['score']
        strover += '未系安全带: {} \n '.format(score)
        #双手离开方向盘
        score = result['both_hands_leaving_wheel']['score']
        strover += '双手离开方向盘: {} \n '.format(score)
        #视角未看前方
        score = result['not_facing_front']['score']
        strover += '视角未看前方: {} \n '.format(score)
        print (strover)
        return content
    else:
        return ''

image_path='F:\paddle\car\ss0.png'
get_license_plate(image_path)
发布了4 篇原创文章 · 获赞 1 · 访问量 2万+
展开阅读全文

没有更多推荐了,返回首页

分享到微信朋友圈

×

扫一扫,手机浏览