AI助力医药交叉学科产教融合实践

6f031b35485755c551c91f291892800d.gif

本次分享从狭义和广义两个角度对AI制药的原理、过程和作用等方面进行了阐述,并提到人才培养是AI制药发展的核心竞争力,对未来的AI制药人才提出了更高的要求——不仅要有情怀和激情,还要具备原始创新和工程优化能力。在飞桨的帮助下,清华大学在制药人才培养方面有所突破,“AI+药学”产学研融合创新基地,深化育人和创新工作。

作者 | 清华大学药学院研究员、博士生导师 田博学

bfc72e68105e164f6436eb5eeae0bbaf.png何谓AI制药

许多对制药领域不太了解的人会有一个疑问:通过计算把药物设计出来能实现吗?答案是肯定的。来自UCSF医疗中心的Matthew Jacobson导师,就用计算的方法做出来一个分子,甚至在临床试验成功以后,将这个分子成功卖给了辉瑞制药,收获了不错的回报。

那么,他的药物是何用途呢?

Matthew Jacobson导师的药物,是用于治疗我们曾在高中课本上学过的镰刀型贫血症。正常的红细胞是甜甜圈的形状,当发生基因突变后,血红蛋白形成的二聚体进一步形成杆状分子,导致红细胞由原来的甜甜圈型变成镰刀型,这就是镰刀型贫血症的产生机制。

Matthew Jacobson导师通过计算设计出一个分子,来阻断这种杆状分子的形成,实现了对这个疾病的治疗。

0adf981cbd774ea67be095d7c67f3d5b.png

此外,还有一个药物也是通过计算的方法设计的——电影《我不是药神》中的格列卫。

有了上述案例,我们可以相信计算设计药物这件事是可行的。还有相关专业——计算机辅助药物设计对此进行研究, AI出现后更名为AI制药。当前,制药这一方向的发展仍然较为困难。

6445ec9112d6a62bb3f51d05a31defb6.png

首先,传统制药过程周期较长,一般为十年以上,且耗资巨大。AI的出现可以实现降本增效,让原来“大海捞针”般的过程变成现在的“顺藤摸瓜”。比如,运用生成模型,能根据靶点直接设计出一些分子。以前,我们只能像“神农尝百草”一样去尝试。现在有了生成模型,在知道靶点的情况下,可以直接从蛋白质里面长出来一些分子。

狭义的AI制药就是设计分子,比如人们熟知的青蒿素、青霉素这样的小分子药物,也包括抗体药物等大分子药物。

671ee5d7608ebbdda0294cfcadc461fe.png

专业课程中讲的是广义的AI制药,除了设计分子以外,还涵盖靶点的发现、化物的设计、化物的优化、药剂学、临床等各个领域。在这些领域,AI都能够发挥一些作用。

32037f8c92b4a76410d97c52129d7e11.png

2020年被称为中国的AI制药元年,大量资本进入这一领域。资本如此喜欢这一领域的原因比较简单——制药的成功率虽然很低,但边际收益很大。比如原来的成功只有1%,现在稍微提升一点,能提升到5%,就可能会产生比较好的收益。

目前,包括百度、华为、腾讯、阿里巴巴在内的很多公司,都有相应的部门参与AI制药。在目前的AI制药当中,AI的主要作用是降本增效。

434105002fb44da7567359e23f7f4863.png未来人才培育挑战重重

AI制药仍有较大发展空间。在未来,中国很可能成为世界创新药物研发的中心,这其中的核心竞争力还是人才,但培养人才是非常困难的一件事。

第四次工业革命后,一部分重复性的体力劳动会被机器替代,除了像盖房这类工作,实验室的工作也已经有了替代方案,下图就是一个无人化学实验室,它可以不吃、不喝、不睡,一周可以做800个有机化学的反应去合成一个药物。

随着大语言模型和一些其他技术的发展,很多的智力劳动也会被替代。

937df2a54d60e6db51220dcfaaa065e7.png

这时候我们不得不思考一个问题:未来到底需要什么样的人才?

面向未来的人才,首先需要有情怀、有激情。有情怀就是不做精致的利己主义者,有激情就是有足够的能量去做一件事情。

这些东西不是通过简单的传授知识就可以实现的。老师在课堂上不经意的一句话可能就会点燃一个学生,而大预言模型或者教师反复去教,并不能实现这一效果。如果学生根本就不想学这个东西,讲再多也没有太大用处。

其次对于未来的人才,原始创新和工程优化能力很重要。原始创新,指的是从0到1的过程,而工程优化是从1到100的过程。

放在制药的场景下,我们国家的CRO公司其实是非常厉害的,从1到100 这个环节能做得很好。

但是从0到1,新靶点、新分子这块做得就相对较差,导致大部分的收益都被国外赚走。而国内的许多公司辛苦做CRO服务,最后也只是赚到较少部分的收益。

那么,能实现原始创新的人才是什么样的?其实每个人都有创新能力,只不过创新能力在我们从小到大的发展过程中,被教育体制给抑制了。

既然每个人都原始创新的能力,大学老师就需要想办法把创新能力激发出来。这件事并不是特别困难,但需要学生一起参与这个过程。大学老师如果只是像过去上课,把自己的内容简简单单讲完就走,这种创新能力的激发将很难出现。

此外,工程优化阶段也非常重要,尤其是在大模型时代。比如,文心一言跟 ChatGPT相比,更多的是工程优化能力上的差别,底层的东西都差不多。

从1做到100这个事情的根源还是在于想不想做,有没有动力做,包括一些技术层面的积累。

如果你想带一群人去到大海的另一边,你要做的不是教他怎么造船,怎么砍树。而是要想办法激起他对大海另一边的向往,这才是核心的东西。

988f53fca94c78583c22e57590344bc0.png飞桨携手清华

助力AI制药人才培养

具体怎么做,每一门课都有自己的思路。但作为老师,我们自身首先要有足够的积累,特别是交叉学科,可能同时涉及到数学、物理、化学、生物、计算机、药学等等。

在课程上,虽然一节课就能把比如微积分、线性代数、概率论这些全都讲完,但老师还要能把这些交叉学科的知识有效地融合起来,这是大语言模型还解决不了的问题,这就需要老师真正花时间去做这些事情。

现在,在高校中,副教授也需要领导自己的科研团队,时间上很紧张。高校学校的考核指标,不利于教师在教学贡献上下太多的功夫。怎么样去平衡这些时间就是需要思考的问题。

清华在与飞桨的合作过程中,有效解决了许多上课的问题。

培养人才的前提,是不能劝退学生。AI制药这门课涉及到多学科的大量内容。教师要考虑到,有的学生,比如生物学和药学的学生,可能对于计算机完全是零基础。学生先学习编程,虽难度较大,但实为必须。此外,即使学完编程,后续的环境配置部分仍然颇有难度,非常“劝退”学生。

edf963ae969ecc071dfdc732d5a28128.png

对于这一问题,飞桨深度学习平台,是一个较好的解决方案。它可以让学生较为快速地直接实践,比如编程设计一个分子,还能在做完后,体验到完成小项目后得到的正反馈。这一反馈是非常重要的。相比之下,如果反复的让学生配置环境,他可能直接就退课了(清华是可以退课的)。

其次,AI制药这门课程的数学门槛也比较高,怎么样把比较抽象的东西简单、具体的讲出来,是比较考验老师的。即使是运用大语言模型,输出的东西仍是公式,如何讲解能让学生理解透彻,需要老师想办法提高讲课能力。

这一课程在算力资源方面也需要支持。所有纯AI模型都需要算力,百度飞桨提供了足够的算力,来帮助学生在课程上收获较多的实践经验。

百度飞桨还助力我们实现了课程考核的创新,有效检验学生学习成果。比如期末考试,老师可以直接创建一个比赛,让学生直接去系统里面提交成绩,包括调参之类的内容,学生自己都可以实时地看到。

当然,这样的考试要给学生足够的时间,这个只占一小部分,主要还是最后的考试。如果没有学会课程,就提交不了结果。如果不明白里面的东西,代码审核也过不了。在考核环节上,还是有较多的方法能够在大模型时代防止学生作弊的。

ce606a1fc9c453288dbd101e5ea27b06.png

此前,清华大学药学院还联合临港实验室、百度飞桨,携手举办AI药物研发算法大赛,共有1000多名选手参赛。

此外,清华大学药学院也和百度飞桨在科研合作,在飞桨螺旋桨PaddleHelix的帮助下,我们在抗体药物方向和药物发现方法方向都有了一些成果,如预测准确度高于Alphaflod 20%的抗体结构模型,和新冠活性小分子药物候选物专利等。

ec2144dcff9fadefdc01782a0969e01f.png

a1f3c40339f20fbc3c0c3fa79d850539.png

百度飞桨还有效助力清华学子参与互联网+“大学生创新创业大赛”。创业是产销融合最好的一个结果,学校也需要为未来培养一些企业家。学生们进行自动化设备搭建,在比赛中积累产业界经验,也能产生商业上的一些思考。

6835ebe302ec9cffda4522ed87169530.png感悟分享

从一个一线教师的角度看,现在我们还处在一个变化比较快的时间点。我们需要注意哪些东西是变的,哪些东西是不变的。

如果了解生物,就能知道有一些基因是不能动的,如果发生突变或者删掉,是必然会致死的。

教育也是一样,有些东西是不变的。越是在这种变化快的情况下,也是需要把那些不变的东西给“揪”出来,其他的部分则需要逐渐适应未来的发展需求。

国内的教育相比于国外,有其自身优势。只不过有些学生的创新能力被抑制,需要教育者的激发。

其次,我也想呼吁大家,不仅关注“短跑”,也要关注“长跑”。很多时候,就像我们看奥运会一样,观众会更关注短跑比赛,因为它很刺激,很快就能看到结果。而长跑比赛,观众都在终点线附近,看见第一名跑过去以后,大部分观众便选择离开,很少有人关注后面的选手,也很少有人关注他们跑的过程。

事实上,科研和许多文科方面的工作都是“长跑”,是长期积累的过程。

作为观众或者评委,我们首先要认可长跑这项运动,然后还需要平衡短跑和长跑之间的关系。调整评审和考核机制,既让一些学生擅长短跑,又能让更多学生参与到长跑当中,是非常重要的。

但要解决这一问题还是比较难的,尤其是现在的社会,大家各方面压力都比较大,可能会倾向于追求短期的回报。

制药是一个长期的过程,同时成功率又很低,很可能10年后才能看到是否有收益,投资人大都不愿意投这种项目。

怎么样通过教育的方式一步步迭代,让越来越多的企业家或者投资人能够关注这样长期的项目,也是我们需要思考的问题。

对于教育本身,硬件和软件两个方面都需要提升。

硬件方面,教室里的多媒体设备在不断迭代更新,百度飞桨这样能提供新知的模型也越来越多。

软件方面则更需要提升。老师是教育过程中的软件,软件的提升是一个长期的工作。比如1995年时电脑的硬盘才几个G,而现在常见的硬盘都已经几百G,硬件一直是在变化的。但像Windows系统和百度搜索引擎到现在人们还都在用,这些软件的积累优化是一个长期的过程,是需要时间的。因此,教育也需要教师长期持续的提升。我们不仅要关注教育的硬件,更要关注教育的软件。

本篇文章根据WAVE SUMMIT 2023深度学习开发者大会讲稿整理而成

9199b2579909d775edad354f7e0a7ba5.png

4f33edd272446bbdff080f6ad7573c8f.png

fc43c3a3b13aa526b69f461a911a3b51.jpeg

5de18dfa668cb381220ebbb350326bb4.jpeg

45f661779bc00d584958b607349c80b6.gif

关注【飞桨PaddlePaddle】公众号

获取更多技术内容~

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值