涂吉
涂吉,男,博士,中国医学科学院基础医学研究所/北京协和医学院基础学院,高级工程师/教师,百度飞桨布道师。主要研究方向为医工交叉、流行病与卫生统计。主持教育部百度2022年医学人工智能课程建设项目和2022年中国医学科学院基础医学研究所医学人工智能教学改革项目。ji.tu@ibms.pumc.edu.cn。
人工智能(Artificial Intelligence, AI)使用计算机代替人类实现认知、识别、分析、决策等功能,对人的意识与思维的信息处理过程进行模拟。人工智能的迅速发展已经深刻改变了人类的社会生活,并将直接作用于生产力与生产关系,使二者也处在深刻变革之中。AI + X学科课程建设不仅可以为学生提供跨学科的知识与技能,培养学生的创新意识与解决问题的能力,还可以促进不同学科之间的交叉融合,推动学科之间的合作与发展。同时,AI技术的发展也为学科教学带来了新的可能性,可以个性化定制学习路径,提高教学效果,激发学生学习的兴趣与潜力。AI+医学是现代医疗发展的需要。
《中国教育现代化2035》中指出:“要大力推进教育理念的现代化”、“更加注重因材施教”。医学人工智能教育,需要现代化教学理念,改进教育教学方法,开展丰富多彩的教育教学活动,积极探索符合医科与工科、理科的深度交叉融合教育特点、时代要求和医科学生成长规律的教育教学模式,从而培养各种层次和类型的新一代医疗卫生人才。
医学人工智能课程体系
医学人工智能课程,是一门医工交叉通识课程,面向不同数学和计算机基础的学生、服务于不同的课题科学研究和不同科室的临床应用需求。医学人工智能课程体系既包括人工智能算法(比如,深度学习或机器学习等),又包括支撑人工智能算法运行的信息基础设施(比如,医疗器械、智能设备、网络通信、移动计算、物联网技术、基础软件等)。医学人工智能课程不局限于仅仅讲授图像分析或语言文字智能理解等,而应更全面、更系统、更务实。医学生们不需要像工科生那样将人工智能当作主业主课去专攻,而是重在拓展工程思维、前沿视野和科普知识,在一定程度上理解人工智能,构筑知识桥梁,便于与工科团队交流合作,并启发医学相关科学技术的创新。
医学人工智能课程体系
医学人工智能课程教学挑战
医学人工智能课程教学存在多个方面的挑战。
医学生们投入人工智能课程的时间和精力有限,对工科知识的接受能力有限,如何系统地设计人工智能在医学中的应用的课程,需要充分调研学生的知识结构和专业基础,充分了解学生的学习特点和个性化需求,以达到较好的教学效果。
青年教师培养是一个系统工程。医学人工智能课程教学最大的挑战,是缺少既具有较强工程背景和宽广的人工智能知识又了解医学生知识结构和临床科研需求的教师。医学人工智能作为一门课程,对主讲教师的专业知识广度的要求极高;若是系列讲座的教学方式,由多个不同细分研究领域的专家学者讲授,则对课程总体建设者的要求极高,需要避免总体上看似成体系,实质上教学内容松散或重复等。
此外,缺乏面向医学生且适合课堂演示的人工智能教学软硬件实物。市场上的人工智能软件或产品,一般成本高、构成组件多、现场演示依赖服务器或网络甚至数据中心。医学人工智能是面向实际应用的课程,实物演示或现场体验的教学效果,往往胜过文字或视频示例。
目前还缺少适合医学生们知识结构和编程技能的医学人工智能授课教材。工科院校的人工智能教材难以直接应用于医学院校。不同专业的医学生们对人工智能的具体需求差异较大,所以授课内容的探索与选择对在医学院校中开展人工智能课程提出了挑战。人工智能技术的特点是更新快,前沿技术编成教材有滞后性。百度飞桨上开源了最新的人工智能技术,提供了最新的技术资料和教程,有助于医学生们及时获取前沿AI知识和掌握最新AI工具。
最后,随着人工智能大模型技术的出现,对医学人工智能课程和教学方式的设计,提出了挑战。对于人工智能实训平台的建设,也提出了迫切的需求。大模型改变了掌握知识技能的方式。如今的知识信息量以指数级别增长,传统的教与学模式,满足不了学生的知识需求。百度文心一言,简单的一问一答,能快速辅助医学生获取知识、获得能力、解决问题。这就需要教师与时俱进,恰当地使用大模型,赋能教育教学,提升教学效率,提高育人效果。
医学人工智能课程教学内容
人工智能技术在我国卫生与健康领域的‘促防诊控治康’各阶段都有应用价值。数据的产生和采集、存储和传输、质量监测与安全保护、数据分析处理,分别对应不同的人工智能细分领域技术需求。另外,国产大模型如百度文心大模型的相关医学教育应用,是医学人工智能课程中不可或缺的教学内容。
1. 人工智能基础理论及前沿进展
我国人工智能创新创业日益活跃,加速积累的技术能力与海量的数据资源、巨大的应用需求、开放的市场环境有机结合,形成了我国人工智能发展的独特优势。但是,我国人工智能整体发展水平与发达国家相比仍存在差距,缺少重大原创成果,在基础理论、核心算法以及关键设备、高端芯片、重大产品与系统、基础材料、元器件、基础软件与接口等方面差距较大。学生需要对人工智能行业现状和发展趋势有一个整体的认识,将来以医学行业需求引领国内人工智能基础理论和高端产业的发展。
2. 人工智能在医学数据产生和采集环节的应用
对产生的数据进行采集,是医学研究的起点。进行数据采集时,需要了解医学数据是如何产生的,从而理解如何运用先进人工智能技术来提升采集效率、提高采集质量、扩大采集数量。比如,对于医学影像数据采集,理解了X射线、CT、MRI、超声等设备产生影像背后的图像处理人工智能技术,就能灵活地进行影像采集时的机器参数设置,从而为后续的深度学习计算机影像辅助诊断提供高质量的输入影像。
对于体检仪器设备的采集数据,根据人工智能中的数字信号处理原理,判断哪些时刻的心电信号是由于人体呼吸或咳嗽而导致的电极抖动,从而引起的数据变化,这些变化不是心电信号,而是外部扰动误差。
3. 人工智能在医学数据存储与传输环节的应用
医学数据存储与传输,涉及到伦理、涉及到存储设备和网络通信。了解人工智能技术平台中的存储层次结构和云计算、移动计算、物联网、医疗互联网,对医学科研大有裨益。比如与公司合作开发电子问卷调查系统,需要知道电子问卷调查数据的存储情况。数据是存储在公司的服务器,还是存储在公司租用的第三方商业服务器,还是数据托管到国际网站所使用的国外服务器或数据中心。数据存储层次结构还与成本、数据访问速度、并发访问用户数量等密切相关。
4. 人工智能在数据质量监测与数据安全保护中的应用
在数据质量监测方面,可以设计人工智能系统,以代替人工核查和人工监督。比如,可以通过图像处理机器视觉技术,自动监督和提取现场流行病学调查中仪器设备和测量范式操作不规范的情况。通过人工智能中的自然语言处理技术,进行电子病历的逻辑核查和异常提醒等。
在数据安全保护方面,需要知晓数据被泄露或截获都有哪些实现技术。技术上,可以通过芯片、操作系统、办公程序、浏览器等等软件或硬件,来获取他人电脑中的数据。移动终端的APP数据安全,也亟需加强保护。
5. 人工智能在数据分析处理中的应用
人工智能技术中的人工智能算法,可分为符号主义、联结主义和行为主义三大类。也可从数据集的角度分为监督学习、半监督学习、无监督学习。还可以分为线性、非线性;时变、时不变;函数式、逻辑规则等等。
人工智能算法可以应用于医学数据分析中的回归、分类和聚类等。比如,通过对健康档案和电子病历中的数据进行人工智能挖掘,可以有效评价干预措施、药物疗效,进而改善医疗行为;通过对大型队列数据进行智能分析,可以助力揭示疾病,尤其是罕见疾病与暴露之间的关联关系。医学生无需自己从零开始实现人工智能算法和搭建算法运行平台,可以借助开放平台,比如百度飞桨星河社区AI Studio,方便快捷地实现算法的应用。
人工智能算法分类的关联示意图
使用人工智能算法进行医学数据分析,需要结合医学知识,否则容易成为数字游戏、脱离诊断和治疗的本质规律。比如部分数据分析导向的医学科研颠倒了提出问题-数据分析的研究思路,先通过数据分析技术寻找相关关系,再来解释这种关联,使得结论的信度和效度很低。只有深刻理解人工智能算法,才不会滥用误用。
6. 文心大模型在医学中的应用
文心一言在医疗领域可用于智能问诊、卫生管理、健康评估、临床决策支持、药物研究、医学科研等。医学生们需要知晓大模型的功能,并学会熟练使用大模型系列工具。比如,可以通过百度文心一言快速了解医学研究领域的历史、现状、前沿及进展。可以通过文心一言快速查阅参考文献、文献翻译、文献内容总结等。可以通过文心一言进行数据自动获取、代码自动生成、分析数据可视化图表自动生成等。对文心一言的提问,也是一项技能,可以让学生在课堂上领悟,课后实战演练和提升提问技巧。
国内外各种大模型的知识面很广,但细分到每个领域,难以做到很深。医学生们需要有志向,将来在某个细分的医疗领域,将专深的医疗知识,设计成知识库,集成到国产大模型中,众多医学专家汇涓流成大海,国产自主可控的大模型系统将造福国民健康。
医学人工智能与大模型课程建设实例
医学教育离不开人工智能平台的支持。《医学人工智能与大模型》这门百度星河社区上的网络公开课,利用百度AI studio人工智能平台上的CPU/GPU算力的支持,结合百度飞桨的开源医学人工智能程序代码,给医学生们提供了声、光、电、磁四个物理量维度的医学信号与影像的AI应用示范。
百度与中国医学科学院联合创建课程
声光电磁,是感知自然界和人体世界的基本物理量。对这些物理量进行采集、存储、传输、分析、解读、决策,就构成了医疗行业应用的整个本质过程。本课程在声、光、电、磁四个维度,各提炼出了医疗行业中主流的用户群体较大的数据监测技术,详细讲解相关医疗器械设备的数据采集原理和数据分析解读决策方法逻辑,并指出可以AI赋能的环节。
医学人工智能与大模型课程内容体系
在百度飞桨中搜索“医学”或点击网址:https://aistudio.baidu.com/education/group/info/30524,即可进入医学人工智能与大模型课程进行学习。
医学人工智能与大模型课程
(本课程受资助项目:教育部2022年百度产学合作协同育人项目(182215PC08768):医学人工智能课程建设)
本课程主要包括3部分内容:医学数字信号处理、医学影像分析处理和多模态医疗大模型。医学数字信号处理包括:脑电、近红外脑血氧FNIRS、超声骨密度、核磁共振MRI信号。医学影像分析处理包括:X射线影像、CT影像、核磁共振MRI影像。多模态医疗大模型包括:大模型的基本概念和注意力机制、医疗大模型概况、多模态医疗大模型实践案例。
百度星河社区网络公开课:医学人工智能与大模型
小结
采用科学、现代的医学人工智能教学理念和模式,可完善医学专业的教育教学,助力打造兼具工程视野和医学思维的学科交叉融合和跨界整合的高端医学拔尖创新人才,是世界高水平医学研究型院校的重要发展策略,有助于医学临床应用和科研成果转化,符合国家智慧医疗发展战略和未来医学发展趋势。
医学人工智能与大模型的教育,离不开信息化。医学院校独立研发医学教育信息化系统费时费力。借助百度飞桨人工智能平台构建医学院校专属的教育信息化系统,是一个极佳的解决方案。医学人工智能与大模型的教育,离不开人工智能实训平台。百度飞桨人工智能平台,已经赋能众多高校众多专业开展人工智能教育,在医学教育领域,同样将会效果显著。(本文原载《中国计算机学会通讯》2023年第9期,作者涂吉,肖文栋,涂文记等,文章内容有所删改,参考文献略。)
AI教学赋能计划由百度飞桨发起,面向高校提供产教融合人才培养方案,一站式助力高校复合型人才培养,欢迎各高校教师加入百度AI教学赋能计划!
关注【飞桨PaddlePaddle】公众号
获取更多技术内容~