燧原科技专注人工智能领域云端算力产品,致力为人工智能产业发展交付普惠的基础设施解决方案,提供原始创新、全栈自研、具备完全自主知识产权的通用人工智能训练和推理产品。
飞桨与燧原经过长时间的适配合作和持续集成(CI)建设,对合入的每一行代码都在其硬件上进行了验证。如今,飞桨正式将燧原纳入飞桨例行版本发布体系。未来,飞桨将基于这一合作模式,与更多硬件厂商持续深度优化,共同支持飞桨重大版本发布,推动AI技术创新和开源生态发展迈上新台阶。
『每日发包』在燧原硬件上享受飞桨的最新特性
即日起,飞桨官网(下载安装地址见下方链接)安装页面新增对燧原平台的支持,用户可根据硬件类型,使用对应指令快速安装适配版本。
https://www.paddlepaddle.org.cn/
本次更新的重要意义在于:过去飞桨对新硬件的适配通常依赖特定版本,更新周期相对固定;而现在,随着燧原纳入每日构建与发版流程,开发者可第一时间使用飞桨最新能力,在原生硬件平台上完成模型训练、推理与部署验证,加速技术创新闭环。
🧪 示例场景:开发者在使用Diffusion模型做推理调优时,可以直接拉取每日发包验证性能优化,缩短模型上线周期。
例行发版对硬件的要求
硬件厂商需要满足以下前置要求才能建设飞桨例行发版:
完成飞桨二级适配
适配代码合入飞桨develop分支
提供搭建 CI / CE 的最小机器资源
承诺提供人力参与 CI / CE 工作
发版详情介绍
支持飞桨版本与软件环境
更多安装命令、兼容性说明可访问飞桨产品硬件支持表(下方链接)查看。
https://www.paddlepaddle.org.cn/documentation/docs/zh/develop/hardware_support/hardware_info_cn.html
其他支持模型范围
飞桨联合硬件厂商在多个主流模型上进行了验证,涵盖图像分类、目标检测、OCR等多个任务类型,确保在燧原平台上推理功能的一致性。
📷 图像分类
已支持多达80+图像分类模型,包括:ConvNeXt系列
FasterNet系列
MobileNet系列
PP-HGNet/PP-LCNet系列
ResNet系列
📊 精度参考指标为 ImageNet-1k 验证集 Top1 Accuracy
🎯 目标检测
适配模型涵盖大中小多尺度检测场景:
FCOS-ResNet50
PicoDet 全系列(XS/S/M/L)
PP-YOLOE_plus 系列
RT-DETR 系列(H/L/X/R50等)
📊 精度参考指标为 COCO2017 验证集 mAP(0.5:0.95)
🚶 行人检测
PP-YOLOE-L_human
PP-YOLOE-S_human
📊 验证集使用 CrowdHuman,精度最高达 48.0%
🔤 文本检测
PP-OCRv4_mobile_det
PP-OCRv4_server_det
📊 检测 Hmean 指标,覆盖多种中文场景图像,精度最高 82.69%
🧾 文本识别
PP-OCRv4_mobile_rec
PP-OCRv4_server_rec
📊 Avg Accuracy 高达 79.20%,适配 1.1w 张真实数据集图片
📄 完整支持模型列表及性能数据,请访问下方链接PaddleX模型列表(燧原 GCU)获取详细信息
https://paddlepaddle.github.io/PaddleX/latest/support_list/model_list_gcu.html
持续集成(CI)验证机制
为保障代码在多硬件平台上的稳定性与适配一致性,飞桨联合硬件厂商共同建设了跨平台 CI 自动化验证系统,该系统已全面接入飞桨日常发版流程。
CI 工作机制说明
自动触发机制:当开发者向 PaddleCustomDevice 提交代码后,CI 系统会自动触发,执行完整验证流程,包括编译、单元测试、模型测试等。
多平台验证支持:当前已支持包括 GCU 在内的多种异构计算平台,CI 会分别在每个平台上独立完成编译与测试,确保适配兼容性。
严格审查流程:除自动流程外,CI还引入人工审核机制,由有权限的代码管理员进行逻辑与规范审查,确保代码合入质量。
✅ 所有流程通过后,代码才可正式合入主干,并参与每日构建与发布。
CI 验证内容与收益
持续评测(CE)机制建设
为确保飞桨模型在异构硬件平台上的稳定性与精度表现,团队同步构建了持续评测(CE, Continuous Evaluation)体系,完成主流模型的推理精度验证工作,保障模型的可运行性和一致性。
📌 验证机制
平台配置:
GCU:S60
Python 3.10,Paddle 分支:develop
验证方式:
使用 PaddleX 脚本调用推理 pipeline
验证精度与Paddle基准结果对齐,允许限定阈值内的误差波动
触发机制:
合入主干后,天级别回归验证
📈 CE体系的建设与执行,是飞桨软硬件协同的重要支撑,标志着飞桨在“模型真实可用性保障”方面迈入体系化、流程化的新阶段。
合作历程回顾
飞桨与燧原厂商的适配合作分阶段展开,从最初实现“能运行”的基础阶段,逐步迈入“高可用”的阶段。
第一阶段:图级别接入(2023年2月)
燧原最初通过在飞桨主仓引入图接入机制,使模型在燧原GCU硬件平台上完成基本运行。基于燧原第二代训练产品云燧T20,燧原分别于2023年2月和2024年1月完成 I & II 级兼容性适配认证。
飞桨芯片适配认证标准:
第二阶段:算子接入(2023年11月)
逐步建设 PaddleCustomDevice 接入体系,支持注册硬件特定算子,提升执行效率。
第三阶段:PaddleX生态适配(2024年11月)
支持数据处理、模型导出、部署工具等子模块在硬件平台上无缝运行,构建端到端闭环体验。
「例行版本发布」是全新起点
引领AI软硬件迈向更紧密协同
本次版本发布,标志着飞桨与燧原完成了从“单次适配”到“日常发版”的深度协同。面向日益紧密的软硬件协同趋势,飞桨正基于此模式不断扩大平台覆盖范围,推动AI基础设施生态协同发展。
开发者朋友们,欢迎访问飞桨官网安装新版本,体验燧原平台上的AI创新之旅!
关注【飞桨PaddlePaddle】公众号
获取更多技术内容~