【ACWING刷题】853. 有边数限制的最短路

【ACWING刷题】853. 有边数限制的最短路

原题链接
运用朴素版的Bellman-Ford算法进行求解

#include  <isotream>
#include <cstring>
using  namespace std;
int  n,m;  // n表示点数,m表示边数
int dist[N];// dist[x]存储1到x的最短路距离
struct Edge{
 int  a,b,w; // 边,a表示出点,b表示入点,w表示边的权重
}edges[M];
int  bellman_ford()// 求1到n的最短路距离,如果无法从1走到n,则返回-1。
{
 memset(dist,0x3f,sizeof dist);
 dist[1]=0;
 
  // 如果第n次迭代仍然会松弛三角不等式,就说明存在一条长度是n+1的最短路径,由抽屉原理,路径中至少存在两个相同的点,说明图中存在负权回路。
 for (int  i=0;i<n;i++)
 {
  for (int  j=0;j<m;j++)
  {
   int  a=edges[j].a,b=edges[j].b,w=edges[j].w;
   if(dist[b]>dist[a]+w)
    dist[b]=dist[a]+w;
  }
 }
 if(dist[n]>0x3f3f3f/2)return  -1;
 return  dist[n];
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值