爱因斯坦求和—— einsum函数用法(pytorch)
前言
这个函数也是偶然间遇到的,觉得还挺好使的。
爱因斯坦求和是一种对求和公式简洁高效的记法,其原则是当变量下标重复出现时,即可省略繁琐的求和符号。
C = einsum('ij,jk->ik', A, B)
->符号就相当于等号,->左边为输入,右边为输出。
还是直接看程序吧。
导入包
# 导入包
import torch
from torch import einsum
求和
a = torch.Tensor(range(2*3)).view(2, 3)
b = torch.einsum("ij -> i", a) #按行求和
c = torch.einsum("ij -> j", a) #按列求和
d = torch.einsum("ij -> ", a) #全部求和
a,b,c,d
# 求和
# a为3维 b维2维 下面就是把a按照第维度0对应点求和得出b
# 等价于 b = a.sum(dim=0)
a = torch.Tensor(range(2*3*4)).view(2, 3, 4)
b = torch.einsum("ijk->jk", a)
a.shape,b.shape,a,b
求转置矩阵
a = torch.Tensor(range(2*3)).view(2, 3)
b = torch.einsum("ij->ji", a)
a,b
矩阵相乘
# 矩阵相乘
a = torch.Tensor(range(2*3)).view(2, 3)
b = torch.Tensor(range(3*4)).view(3, 4)
c = torch.einsum("ij,jk->ik", a, b)
d = a@b
a,b,c,d
求矩阵的迹
# 求矩阵的迹
a = torch.randn(4, 4)
b = torch.einsum('ii', a)
a,b
提取矩阵对角线元素
# 提取矩阵对角线元素为向量
a = torch.randn(4, 4)
b = torch.einsum('ii->i',a )
a,b
内积 外积
# 张量内积 外积
a = torch.tensor([1,2])
b = torch.tensor([1,3,5])
c = torch.tensor([3,4])
## 内积
d = torch.einsum("i, j ->", a, c)
## 外积
e = torch.einsum("i, j -> ij", a, b)
d,e
求批矩阵乘法
# 求批矩阵乘法
a = torch.randn(3,2,5)
b = torch.randn(3,5,4)
c = torch.einsum('bij,bjk->bik', [As, Bs])
a.shape,b.shape,c.shape
a = torch.Tensor(range(2*3*4*5)).view(2, 3, 4, 5)
b = torch.Tensor(range(2*3*7*8)).view(2, 3, 7, 8)
c = torch.einsum("ijkl,ijmn->klmn", a, b)
a.shape,b.shape,c.shape
总结
未完待续,,,,
本文详细介绍了PyTorch中的einsum函数使用方法,包括求和、矩阵转置、矩阵乘法、迹计算、对角线元素提取、内积外积及批矩阵乘法等操作,并提供了丰富的示例代码。
2797

被折叠的 条评论
为什么被折叠?



