- 博客(10)
- 收藏
- 关注
原创 【Python工具包之:Matplotlib】
可以将Matplotlib理解为一个画二维图表的python工具库(能实现matlab的常用功能),专门用于开发2D图表(包括3D图表),以渐进、交互式方式实现数据可视化。故:掌握了Matplotlib相当于掌握了matlab,两者都是画图工具。1)Canvas:是位于最底层的系统层,在绘图中充当画板的角色,即放置画布(Figure)的工具。(注:该层不需要手动设置,调用Matplotlib时自动生成!
2023-10-09 15:26:55 1269
原创 【零基础深度学习教程第九课:图像分割基础】
每张图像都是由许多像素组成,而图像分割顾名思义就是将像素按照图像中表达语义含义的不同进行分组/分割。换句话说,语义分割其实就是为图片中的每个像素打上相应的标签,这些标签即分类类别在真实世界中的意义(例如需要区分下图中属于汽车的像素,并把这些像素涂成紫色)。图像分割呈现出的视觉效果就是图片中不同的目标有不同的颜色,如下所示:简单来说,分割的目的是将一张RGB图像或是灰度图像作为输入,输出分割图。其中每一个像素包含了其类别的标签。
2023-07-13 09:42:42 569 1
原创 【零基础深度学习教程第八课:目标检测(下)】
无论是用传统的滑动窗口检测算法还是YOLO算法对上图进行目标检测,都需要对上图中每个区域进行目标检测(在每个区域运行一遍分类器),但是我们发现:其实这张图片中的绝大部分区域是没有目标的,这也就造成了过多计算资源的浪费。
2023-07-07 15:52:48 593 2
原创 【零基础深度学习教程第七课:目标检测(上)】
本课程将进入深度学习计算机视觉实践阶段,介绍目标检测领域相关的基本概念,为下一章学习经典目标检测算法做铺垫。
2023-06-15 10:41:14 599 1
原创 【零基础深度学习教程第五课:卷积神经网络 (下)】
一张彩色图像是以三维矩阵的形式存储在计算机中的,假设对一张彩色图像进行卷积操作,那么就涉及到三维卷积。要对一个三维矩阵进行卷积操作,那么所使用的过滤器(卷积核)也是三维的(卷积核的每一维对应红绿蓝三个通道)。假设某张彩色图像的维度为 6×6×3(第一个6为高、第二个6为宽、第三个3为通道数),使用 3×3×3(第一个3为高、第二个3为宽、第三个3为通道数)的过滤器进行卷积,卷积将会得到一张4×4的二维图像:注:三维图像长和宽与过滤器的长和宽可以自由选择,但是两者的通道数必须相同!假设卷积步长为1。
2023-03-29 11:37:02 1211
原创 【零基础深度学习教程第四课:卷积神经网络 (上)】
上图是一个 6×6 的灰度图像,因为它是灰度图像,所以维度为 6×6×1(因为只有一个颜色通道)。为了检测图像中的垂直边缘,需要构造一个 3×3 的矩阵(这个矩阵在卷积神经网络中一般被称为过滤器),这个 3×3 矩阵的第一列元素为 1、第二列元素为 0、第三列元素为 -1,如下图所示:上图中的 * 符号指的是通过过滤器(或滤波器)对这个 6×6 的图像进行卷积运算。
2023-03-28 10:15:37 733
原创 【零基础深度学习教程第三课:神经网络训练优化】
本章将介绍神经网络训练过程中的几种常见的优化算法以及模型评估指标、还会给出一些调参的技巧和建议。
2023-03-27 16:07:29 1165 1
原创 【零基础深度学习教程第一课:深度学习基础】
深度学习快速入门指南:通过介绍深度学习与神经网络的一些基本且重要的概念,让对该领域感兴趣的伙伴快速上手,建立一个对深度学习基本的认识!
2022-09-27 10:44:24 5455
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人