Ubuntu系统操作指令

前言

对于软件需要考虑管理,包括安装、更新与卸载命令。对于环境需要考虑配置,包括创建、编辑与运行命令。
通过组合按键打开命令行窗口:Ctrl+Alt+t或者Alt+F2

系统

Ubuntu 22.04 jammy

更改系统DNS服务器为resolvconf

用于解决开启网络服务时,提示‘symbolic link‘问题

sudo rm /etc/resolv.conf
sudo ln -s ../run/resolvconf/resolv.conf /etc/resolv.conf
sudo resolvconf -u
#或者
sudo dpkg-reconfigure resolvconf
#Use resolvectl status instead.
#In systemd 239 systemd-resolve has been renamed to resolvectl
resolvectl --status

参考:

Ubuntu系统链接远程服务器

通过命令行形式链接远程服务器

ssh username@ip

通过Ubuntu系统自带的文件管理器中的其他位置链接远程服务器
其他位置

ssh://ip

参考:

查看驱动

#安装驱动管理工具
sudo apt-get install ubuntu-drivers-common
#查找可用的驱动程序
sudo ubuntu-drivers devices
#安装推荐的驱动程序
sudo ubuntu-drivers autoinstall
sudo apt install nvidia-driver-515
#查看当前驱动
glxinfo | grep "OpenGL version"
dpkg -l | grep nvidia
#卸载驱动
sudo apt-get remove --purge 

安装python

下载链接

#更新必要的安装软件
apt-get update
apt-get install zlib1g-dev libbz2-dev libssl-dev libncurses5-dev libsqlite3-dev libreadline-dev tk-dev libgdbm-dev libdb-dev libpcap-dev xz-utils libexpat1-dev liblzma-dev libffi-dev libc6-dev
# 下载源码包
wget https://www.python.org/ftp/python/3.8.1/Python-3.8.1.tgz
# 解压编译安装
tar -zxvf Python-3.8.1.tgz
cd Python-3.8.3
#编译的时候要有相关选项,这个选项不全面,到时候要在修改
./configure  --prefix=/usr/local
make&&sudo make install

安装ssh服务器连接

sudo apt install openssh-server
#/etc/init.d/ssh start         %启动ssh
#/etc/init.d/ssh stop          %关闭ssh
#/etc/init.d/ssh restart       %重启ssh
#ssh配置文件位置~/.ssh/

安装jupyter notebook

pip install jupyterlab
#在jupyternotebook中运行服务器命令
!cmd
%cmd
#上述命令都可以不过!稳定一些,
#针对google colab云服务器
##挂载google drive
from google.colab import drive
drive.mount('/content/drive')
import os
##跳转到指定路径
%cd '/content/drive/My Drive' 
#!pwd 
##创建文件夹
!mkdir researchHub
##进入文件夹
# %cd './researchHub'
os.chdir('./researchHub')
##执行命令
!git clone https://github.com/xxxxxx

安装Cuda Toolkit

#通过runfile文件进行安装
wget https://developer.download.nvidia.com/compute/cuda/11.3.0/local_installers/cuda_11.3.0_465.19.01_linux.run
sudo sh cuda_11.3.0_465.19.01_linux.run
#安装后设置cuda的环境变量
vim ~/.bashrc
#添加以下内容
export LD_LIBRARY_PATH=/usr/local/cuda/lib64
export PATH=$PATH:/usr/local/cuda/bin
#运行配置使生效
source ~/.bashrc
#查看cuda版本
nvcc -V
# CUDA
cat /usr/local/cuda/version.txt
# cudnn
cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
# 卸载
# 1.运行卸载脚本
cd /usr/local/cuda/bin
sudo ./uninstall_cuda_9.0.pl
# 2.删除安装文件夹
sudo rm -rf cuda
sudo rm -r cuda-9.0

cuda版本

安装Nvidia-Container-Toolkit

#设置gpg-key
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
      && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \
            sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
            sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list
#更新及安装
sudo apt-get update            
sudo apt-get install -y nvidia-container-toolkit
nvidia-ctk --version
#配置container-toolkit的守护进程
sudo nvidia-ctk runtime configure --runtime=docker
sudo systemctl restart docker

安装pytorch镜像容器

#一定要添加sudo权限
sudo docker push ph210950/ai:tagname
sudo docker login registry.gitlab.com
sudo docker push registry.gitlab.com/ph210950/ai:
sudo docker push ph210950/ai:pytorchjupyterandlabv2
sudo docker push registry.gitlab.com/ph210950/ai:pytorchjupyterandlabv2
sudo docker push registry.gitlab.com/ph210950/ai:pytorchjupyterlabv1
docker pull
docker run
#测试
# Python 测试
import torch
# 若正常则静默
a = torch.tensor(1.)
# 若正常则静默
a.cuda()
# 若正常则返回 tensor(1., device='cuda:0')
from torch.backends import cudnn
# 若正常则静默
cudnn.is_available()
# 若正常则返回 True
cudnn.is_acceptable(a.cuda()) 
# 若正常则返回 True

镜像位置

卸载软件

sudo apt purge software

Ubuntu版本对应代号

版本代号

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值