前言
EM算法广泛用于含有隐藏变量的模型的极大似然估计。
参考:
参数分析
θ
=
[
P
(
z
1
∣
x
)
,
P
(
z
2
∣
x
)
,
⋯
,
P
(
z
m
∣
x
)
,
P
(
y
1
∣
z
1
,
x
)
,
P
(
y
2
∣
z
1
,
x
)
,
⋯
,
P
(
y
n
∣
z
1
,
x
)
,
P
(
y
1
∣
z
2
,
x
)
⋯
,
P
(
y
k
∣
z
m
,
x
)
⋯
,
P
(
y
n
∣
z
m
,
x
)
]
\begin{align*} \theta=&[P(z_1|x),P(z_2|x),\cdots,P(z_m|x),P(y_1|z_1,x),\\ & P(y_2|z_1,x),\cdots,P(y_n|z_1,x),P(y_1|z_2,x)\cdots,P(y_k|z_m,x)\cdots,P(y_n|z_m,x)] \end{align*}
θ=[P(z1∣x),P(z2∣x),⋯,P(zm∣x),P(y1∣z1,x),P(y2∣z1,x),⋯,P(yn∣z1,x),P(y1∣z2,x)⋯,P(yk∣zm,x)⋯,P(yn∣zm,x)]
即EM算法中的参数其实就是到中间变量的条件概率和从中间变量到类别标签y的条件概率。
1688

被折叠的 条评论
为什么被折叠?



