2019-ACM-ICPC-南京区网络赛-E. K Sum(莫比乌斯反演 + 杜教筛)

K Sum

推式子

F n ( k ) = ∑ l 1 = 1 n ∑ l 2 = 1 n ⋯ ∑ l k = 1 n ( g c d ( l 1 , l 2 , … , l k ) ) 2 = ∑ d = 1 n d 2 ∑ l 1 = 1 n d ∑ l 2 = 1 n d ⋯ ∑ l k = 1 n d ( g c d ( l 1 , l 2 , … , l k ) = 1 ) = ∑ d = 1 n d 2 ∑ l 1 = 1 n d ∑ l 2 = 1 n d ⋯ ∑ l k = 1 n d ∑ t ∣ g c d ( l 1 , l 2 , … , l k ) μ ( t ) = ∑ d = 1 n d 2 ∑ t = 1 n d μ ( t ) ( n t d ) 2 另 T = t d = ∑ T = 1 n ( n T ) k ∑ d ∣ T d 2 μ ( T d ) ∑ i = 2 n F n ( i ) = ∑ T = 1 n ∑ i = 2 k ( n T ) i ∑ d ∣ T d 2 μ ( T d ) 到 这 一 步 前 面 的 一 部 分 只 要 对 等 比 数 列 求 和 加 上 欧 拉 降 幂 就 行 后 面 是 一 个 积 性 函 数 前 缀 和 , 我 们 可 以 考 虑 通 过 杜 教 筛 求 解 。 f ( n ) = ∑ d ∣ n d 2 μ ( n d ) f ( n ) = ( μ ∗ i d 2 ) ( n ) ( f ∗ I ) ( n ) = ( μ ∗ I ∗ i d 2 ) ( n ) = i d 2 ( n ) ∑ i = 1 n i 2 = ∑ i = 1 n ∑ d ∣ i f ( d ) = ∑ i = 1 n ∑ d = 1 n i f ( d ) = ∑ i = 1 n S ( n i ) S ( n ) = ∑ i = 1 n i 2 − ∑ i = 2 n S ( n i ) 还 是 写 一 下 等 比 数 列 的 求 和 公 式 吧 ∑ T = 1 n ∑ i = 2 k n T ( ( n T ) k − 1 ) n T − 1 − n T 然 后 注 意 特 判 一 下 公 比 为 1 的 特 殊 情 况 , 因 为 这 个 给 w a 了 一 发 。 F_n(k) = \sum_{l_1 = 1} ^{n} \sum_{l_2 = 1} ^{n} \dots \sum_{l_k = 1} ^{n} (gcd(l_1, l_2,\dots, l_k)) ^ 2\\ = \sum_{d = 1} ^{n} d ^ 2 \sum_{l_1 = 1} ^{\frac{n}{d}} \sum_{l_2 = 1} ^{\frac{n}{d}} \dots \sum_{l_k = 1} ^{\frac{n}{d}} (gcd(l_1, l_2,\dots, l_k) = 1)\\ = \sum_{d = 1} ^{n} d ^ 2 \sum_{l_1 = 1} ^{\frac{n}{d}} \sum_{l_2 = 1} ^{\frac{n}{d}} \dots \sum_{l_k = 1} ^{\frac{n}{d}} \sum_{t \mid gcd(l_1, l_2,\dots, l_k)} \mu(t)\\ = \sum_{d = 1} ^{n}d ^ 2 \sum_{t = 1} ^{\frac{n}{d}} \mu(t) (\frac{n}{td}) ^ 2\\ 另T = td\\ = \sum_{T = 1} ^{n} (\frac{n}{T}) ^ k \sum_{d \mid T} d ^ 2 \mu(\frac{T}{d})\\ \sum_{i = 2} ^{n} F_n(i) = \sum_{T = 1} ^{n} \sum_{i = 2} ^{k} (\frac{n}{T}) ^ i \sum_{d \mid T} d ^ 2 \mu(\frac{T}{d})\\ 到这一步前面的一部分只要对等比数列求和加上欧拉降幂就行\\后面是一个积性函数前缀和,我们可以考虑通过杜教筛求解。 \\f(n) = \sum_{d \mid n} d ^ 2 \mu(\frac{n}{d})\\ f(n) = (\mu * id ^ 2)(n)\\ (f * I)(n) = (\mu * I * id ^ 2)(n) = id ^ 2(n)\\ \sum_{i = 1} ^{n} i ^ 2 = \sum_{i = 1} ^{n} \sum_{d \mid i} f(d) = \sum_{ i =1} ^{n} \sum_{d = 1} ^{\frac{n}{i}}f(d) = \sum_{i = 1} ^{n} S(\frac{n}{i})\\ S(n) = \sum_{i = 1} ^{n} i ^ 2 - \sum_{i = 2} ^{n} S(\frac{n}{i})\\ 还是写一下等比数列的求和公式吧\\ \sum_{T = 1} ^{n} \sum_{i = 2} ^{k} \frac{\frac{n}{T}((\frac{n}{T}) ^ k - 1)}{\frac{n}{T} - 1} - \frac{n}{T}\\ 然后注意特判一下公比为1的特殊情况,因为这个给wa了一发。 Fn(k)=l1=1nl2=1nlk=1n(gcd(l1,l2,,lk))2=d=1nd2l1=1dnl2=1dnlk=1dn(gcd(l1,l2,,lk)=1)=d=1nd2l1=1dnl2=1dnlk=1dntgcd(l1,l2,,lk)μ(t)=d=1nd2t=1dnμ(t)(tdn)2T=td=T=1n(Tn)kdTd2μ(dT)i=2nFn(i)=T=1ni=2k(Tn)idTd2μ(dT)f(n)=dnd2μ(dn)f(n)=(μid2)(n)(fI)(n)=(μIid2)(n)=id2(n)i=1ni2=i=1ndif(d)=i=1nd=1inf(d)=i=1nS(in)S(n)=i=1ni2i=2nS(in)T=1ni=2kTn1Tn((Tn)k1)Tn1wa

代码

/*
  Author : lifehappy
*/
#pragma GCC optimize(2)
#pragma GCC optimize(3)
#include <bits/stdc++.h>

#define mp make_pair
#define pb push_back
#define endl '\n'
#define mid (l + r >> 1)
#define lson rt << 1, l, mid
#define rson rt << 1 | 1, mid + 1, r
#define ls rt << 1
#define rs rt << 1 | 1

using namespace std;

typedef long long ll;
typedef unsigned long long ull;
typedef pair<int, int> pii;

const double pi = acos(-1.0);
const double eps = 1e-7;
const int inf = 0x3f3f3f3f;

inline ll read() {
    ll f = 1, x = 0;
    char c = getchar();
    while(c < '0' || c > '9') {
        if(c == '-')    f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        x = (x << 1) + (x << 3) + (c ^ 48);
        c = getchar();
    }
    return f * x;
}

const int N = 1e6 + 10, mod = 1e9 + 7, inv6 = 166666668;

ll s[N];

int prime[N], mu[N], cnt;

bool st[N];

ll quick_pow(ll a, ll n) {
    ll ans = 1;
    while(n) {
        if(n & 1) ans = ans * a % mod;
        a = a * a % mod;
        n >>= 1;
    }
    return ans;
}

void init() {
    mu[1] = 1;
    for(int i = 2; i < N; i++) {
        if(!st[i]) {
            mu[i] = -1;
            prime[cnt++] = i;
        }
        for(int j = 0; j < cnt && i * prime[j] < N; j++) {
            st[i * prime[j]] = 1;
            if(i % prime[j] == 0) break;
            mu[i * prime[j]] = -mu[i];
        }
    }
    // for(int i = 1; i <= 10; i++) {
    //     cout << mu[i] << " \n"[i == 10];
    // }
    for(int i = 1; i < N; i++) {
        for(int j = i; j < N; j += i) {
            s[j] = (s[j] + 1ll * i * i % mod * mu[j / i] % mod + mod) % mod;
        }
    }
    // for(int i = 1; i <= 10; i++) {
    //     cout << s[i] << " \n"[i == 10];
    // }
    for(int i = 1; i < N; i++) {
        s[i] = (s[i] + s[i - 1]) % mod;
    }
}

unordered_map<int, int> ans_s;

ll S(ll n) {
    if(n < N) return s[n];
    if(ans_s.count(n)) return ans_s[n];
    ll ans = 1ll * n * (n + 1) % mod * (2 * n + 1) % mod * inv6 % mod;
    for(ll l = 2, r; l <= n; l = r + 1) {
        r = n / (n / l);
        ans = (ans - (r - l + 1) * S(n / l) % mod + mod) % mod;
    }
    return ans_s[n] = ans;
}

ll calc(ll q, ll n, ll x) {
    if(q == 1) return (x - 1 + mod) % mod;
    ll ans = q * (quick_pow(q, n) - 1) % mod * quick_pow(q - 1, mod - 2) % mod;
    return (ans - q + mod) % mod;
}

int main() {
    // freopen("in.txt", "r", stdin);
    // freopen("out.txt", "w", stdout);
    ios::sync_with_stdio(false), cin.tie(0), cout.tie(0);
    init();
    int T; cin >> T;
    while(T--) {
        int n, k1 = 0, k2 = 0, sz; cin >> n;
        string str; cin >> str; sz = str.size();
        for(int i = 0; i < sz; i++) {
            k1 = (1ll * k1 * 10 + (str[i] - '0')) % (mod - 1);
            k2 = (1ll * k2 * 10 + (str[i] - '0')) % mod;
        }//公比为1的时候特判,所以记录两个k。
        // cout << n << " " << str << endl;
        ll ans = 0;
        for(ll l = 1, r; l <= n; l = r + 1) {
            r = n / (n / l);
            // cout << l << " " << r << endl;
            // cout << S(r) << " " << S(l - 1) << endl;
            ans = (ans + calc(n / l, k1, k2) * (S(r) - S(l - 1)) % mod + mod) % mod;
            // cout << ans << endl;
        }
        cout << ans << endl;
        // cout << endl;
    }
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值