python决策树分类模型ID3算法

# -*- coding: utf-8 -*-

# 代码5-2

import pandas as pd
# 参数初始化
filename = '../data/sales_data.xls'
data = pd.read_excel(filename, index_col = u'序号')  # 导入数据

# 数据是类别标签,要将它转换为数据
# 用1来表示“好”“是”“高”这三个属性,用-1来表示“坏”“否”“低”
data[data == u'好'] = 1
data[data == u'是'] = 1
data[data == u'高'] = 1
data[data != 1] = -1
x = data.iloc[:,:3].astype(int)
y = data.iloc[:,3].astype(int)


from sklearn.tree import DecisionTreeClassifier as DTC
dtc = DTC(criterion='entropy')  # 建立决策树模型,基于信息熵
dtc.fit(x, y)  # 训练模型

# 导入相关函数,可视化决策树。
# 导出的结果是一个dot文件,需要安装Graphviz 才能将它转换为pdf或png等格式。
from sklearn.tree import export_graphviz
x = pd.DataFrame(x)

 
with open("../tmp/tree.dot", 'w') as f:
    export_graphviz(dtc, feature_names = x.columns, out_file = f)
    f.close()




结果
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值