Python基础数据类型

Python基础数据类型

什么是数据类型?

我们人类可以很容易的分清数字与字符的区别,但是计算机并不能呀,计算机虽然很强大,但从某种角度上看又很傻,除非你明确的告诉它,1是数字,“汉”是文字,否则它是分不清1和‘汉’的区别的,因此,在每个编程语言里都会有一个叫数据类型的东东,其实就是对常用的各种数据类型进行了明确的划分,你想让计算机进行数值运算,你就传数字给它,你想让它处理文字,就传字符串类型给它。Python中常用的数据类型有多种,如下:

整数(int) ,字符串(str),布尔值(bool),列表(list),元组(tuple),字典(dict),集合(set).

 - 数字 (int):主要用于运算	如:1, 2, 3...
 - 布尔(bool):判断真假		如:True, False.
 - 字符串(str):				如:‘张三’,‘zhangsan’,‘123’
 - 元组(tuple):只读,不能更改	如:(1,'alex',2,) 
 - 列表(list):大量有序数据	如:[1,2,3]
 - 字典(dict):大量数据  		如:{'name':'zhangsan','age':18}

数据类型转换?

对python内置的数据类型进行转换时,可以使用内置函数,常用的类型转换函数如下:

函数说明
int(x [ base ])将x转换为一个整数
long(x [ base ])将x转换为一个长整数
fload(x)将x转换为一个浮点数
complex(real [ img ])创建一个复数
str( x )将对象 x 转换为字符串
repr( x )将对象 x 转换为表达式字符串
eval( str )用来计算在字符串中的有效Python表达式,并返回一个对象
tuple(x)将序列 s 转换为一个元组
list(x)将序列 s 转换为一个列表
chr(x)将一个整数转换为一个字符
unichr(x)将一个整数转换为Unicode字符
ord(x)将一个字符转换为它的整数值
hex(x)将一个整数转换为一个十六进制字符串
oct(x)将一个整数转换为一个八进制字符串


	今日鸡汤:
	
							世界上本没有路,走的人多了,也便成了路
							
												  	--鲁迅
92讲视频课+16大项目实战+源码+¥800元课程礼包+讲师社群1V1答疑+社群闭门分享会=99元   为什么学习数据分析?       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。    本课程共包含五大模块: 一、先导篇: 通过分析数据分析师的一天,让学员了解全面了解成为一个数据分析师的所有必修功法,对数据分析师不在迷惑。   二、基础篇: 围绕Python基础语法介绍、数据预处理、数据可视化以及数据分析与挖掘......这些核心技能模块展开,帮助你快速而全面的掌握和了解成为一个数据分析师的所有必修功法。   三、数据采集篇: 通过网络爬虫实战解决数据分析的必经之路:数据从何来的问题,讲解常见的爬虫套路并利用三大实战帮助学员扎实数据采集能力,避免没有数据可分析的尴尬。   四、分析工具篇: 讲解数据分析避不开的科学计算库Numpy、数据分析工具Pandas及常见可视化工具Matplotlib。   五、算法篇: 算法是数据分析的精华,课程精选10大算法,包括分类、聚类、预测3大类型,每个算法都从原理和案例两个角度学习,让你不仅能用起来,了解原理,还能知道为什么这么做。
【为什么学习数据挖掘】       人工智能、大数据时代有什么技能是可以运用在各种行业的?数据分析就是。       从海量数据中获得别人看不见的信息,创业者可以通过数据分析来优化产品,营销人员可以通过数据分析改进营销策略,产品经理可以通过数据分析洞察用户习惯,金融从业者可以通过数据分析规避投资风险,程序员可以通过数据分析进一步挖掘出数据价值,它和编程一样,本质上也是一个工具,通过数据来对现实事物进行分析和识别的能力。不管你从事什么行业,掌握了数据分析能力,往往在其岗位上更有竞争力。 【超实用的课程内容】      本课程为Python数据挖掘方向的入门课程,课程主要以真实数据为基础,详细介绍数据挖掘入门的流程和使用Python实现pandas与numpy在数据挖掘方向的运用,并深入学习如何运用scikit-learn调用常用的数据挖掘算法解决数据挖掘问题,为进一步深入学习数据挖掘打下扎实的基础。 本课程分为三大部分: 基础知识篇:主要讲解数据挖掘这项技能的基本工作流程和介绍和入门必须的基本技能Python语言的入门,带领大家了解数据挖掘的常见操作和基础知识。 数据采集篇:学习如何解决数据挖掘的数据来源问题,读取各类型不同的数据包括CSV,excel,MySQL进行数据采集的交互。 数据探索篇:本篇主要解决数据的预处理保证数据的质量并用常见数据挖掘算法进行特征提取,分析数据背后隐含的信息。 【报名须知】 课程采取录播模式,课程永久有效,可无限次观看 课件、课程案例代码完全开放给你,你可以根据所学知识,自行修改、优化 【如何开始学习?】 PC端:报名成功后可以直接进入课程学习 移动端:下载CSDN学院或CSDN
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页