Coggle 30 Days of ML(23年7月)任务五:XGBoost训练与预测

文章介绍了如何利用TFIDF特征和XGBoost进行文本分类的训练与预测,通过Sklearn库实现模型构建。模型在训练集上得到100%的准确率、精确率和召回率,但在测试集上表现为过拟合,得分0.8848。通过引入交叉验证和参数调整,模型性能提升至97.36%,显示出XGBoost的潜力。
摘要由CSDN通过智能技术生成

Coggle 30 Days of ML(23年7月)任务五:XGBoost训练与预测

任务五:使用TFIDF特征和XGBoost完成训练和预测
  • 说明:在这个任务中,你需要使用TFIDF特征和XGBoost算法完成训练和预测,进一步提升文本分类的性能。
  • 实践步骤:
    1. 准备TFIDF特征矩阵和相应的标签。
    2. 划分训练集和测试集。
    3. 使用Sklearn中的XGBoost算法进行训练,并使用训练好的模型对测试集进行预测。
    4. 评估模型的性能,如准确率、精确率、召回率等指标。

对于这一部分来说,我们只需要换一下模型即可,从线性模型换成一个比较强大的XGBoost模型即可完成,所以主要在评估结果中

TFIDF提取特征

首先使用任务三中的方法先提取特征

tfidf = TfidfVectorizer(token_pattern=r'(?u)\b\w\w+\b', max_features=4000, ngram_range=(1, 2))
train_tfidf = tfidf.fit_transform(train_data['content'])
test_tfidf = tfidf.fit_transform(test_data['content'])

这样我们就一句得到了TFIDF的特征矩阵,接下来我们就可以进行下一步的训练和测试了

训练XGBoost

这里修改为训练XGBoost模型

model = xgb.XGBClassifier()
model.fit(train_tfidf, train_data['label'])

训练完以后,我们就得到了一个不错的XGB模型,接下来我们可以进行评估模型的性能

评估模型

首先我们可以计算一下准确率,从结果上来看,准确率很圆满为100%

predictions = model.predict(train_tfidf)
accuracy = accuracy_score(train_data['label'], predictions)
print("Accuracy:", accuracy)
Accuracy: 1.0

我们还计算了精确率和召回率的指标,均为100%

from sklearn.metrics import precision_score, recall_score

precision = precision_score(train_data['label'], predictions)
recall = recall_score(train_data['label'], predictions)
print("Precision:", precision)
print("Recall:", recall)
Precision: 1.0
Recall: 1.0

模型预测及提交

最后利用模型对测试集进行预测,得到结果文件

submit = pd.read_csv('ChatGPT/sample_submit.csv')
submit = submit.sort_values(by='name')

submit['label'] = model.predict(test_tfidf).astype(int)

submit.to_csv('ChatGPT/xgb.csv', index=None)

经过提交以后,最后的分数为0.8848,从结果上来看,还是存在一些过拟合的,还是需要对其进行一些调参以得到更好的结果,并且可能还是需要一个验证集来检测结果是否过拟合,减小过拟合应该可以得到不错的分数

在这里插入图片描述

改进与提高

后续我进行学习的时候,再进行了改进,得到了更好的结果,我加入了cross_val_predict()函数进行交叉验证,使用交叉验证的目的是为了更准确地评估模型的性能和泛化能力。交叉验证是一种评估机器学习模型的统计方法,通过将数据集划分为多个子集,在不同的训练和验证集上多次训练和评估模型,以得到更可靠的性能指标。

import glob
import numpy as np
import pandas as pd
import xgboost as xgb
from xgboost import XGBClassifier
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.model_selection import cross_val_predict
from sklearn.metrics import classification_report
train_data = pd.read_csv('ChatGPT/train.csv')
test_data = pd.read_csv('ChatGPT/test.csv')

# train_data['content'] = train_data['content'].apply(get_num)
# test_data['content'] = test_data['content'].apply(get_num)

train_data['content'] = train_data['content'].apply(lambda x: x[1:-1])
test_data['content'] = test_data['content'].apply(lambda x: x[1:-1])

tfidf = TfidfVectorizer(token_pattern=r'\w{1}',ngram_range=(1,3), max_features=10000)
tfidf.fit(train_data['content'].apply(lambda x: ' '.join(x)))
train_tfidf_feat = tfidf.transform(train_data['content'].apply(lambda x: ' '.join(x)))
test_tfidf_feat = tfidf.transform(test_data['content'].apply(lambda x: ' '.join(x)))

val_pred = cross_val_predict(
    XGBClassifier(n_estimators=50),
    train_tfidf_feat,
    train_data['label']
)
print(classification_report(train_data['label'], val_pred, digits=3))

m = XGBClassifier(n_estimators=50)
m.fit(train_tfidf_feat, train_data['label'])
test_pred = m.predict(test_tfidf_feat)
test_data['label'] = test_pred
test_data[['name', 'label']].to_csv('ChatGPT/xgb.csv', index=None)
              precision    recall  f1-score   support

           0      0.974     0.995     0.984     11836
           1      0.966     0.852     0.905      2164

    accuracy                          0.973     14000
   macro avg      0.970     0.923     0.945     14000
weighted avg      0.972     0.973     0.972     14000

最后得到了更好的成绩,97.36,后续继续努力,冲上99+!!!

在这里插入图片描述

最后我有对模型进行调整,最后又有提升,还差一点点到99+了,继续努力,我觉得xgboost的潜力还是很大的,单单xgboost肯定就有99+的潜力,还可以继续冲一下

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

风信子的猫Redamancy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值