- 博客(343)
- 资源 (50)
- 问答 (2)
- 收藏
- 关注
原创 GAN Step By Step -- Step7 WGAN
WGAN,即Wasserstein GAN,算是GAN史上一个比较重要的理论突破结果,它将GAN中两个概率分布的度量从f散度改为了Wasserstein距离,从而使得WGAN的训练过程更加稳定,而且生成质量通常也更好。Wasserstein距离跟最优传输相关,属于Integral Probability Metric(IPM)的一种,这类概率度量通常有着更优良的理论性质,因此WGAN的出现也吸引了很多人从最优传输和IPMs的角度来理解和研究GAN模型。
2023-01-10 22:43:02
1366
3
原创 【论文泛读】ConvNeXt:A ConvNet for the 2020s(新时代的卷积)
在新时代中,是否卷积神经网络就已经被时代淘汰了呢!FaceBook研究所的“A ConvNet for the 2020s”,即ConvNeXt 这篇文章,通过借鉴 Swin Transformer 精心构建的 tricks,卷积在图像领域反超 Transform。这些技巧对分类问题下游downstream的问题也有效果。简单的来说,似乎就是说明,用Swin Transformer的丹方,在卷积神经网络中炼丹也有很好的效果。
2023-01-07 13:21:55
2758
原创 Pytorch CIFAR10图像分类 EfficientNet v1篇
EfficientNet源自Google Brain的论文EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. 从标题也可以看出,这篇论文最主要的创新点是. 论文提出了,混合缩放,把网络缩放的三种方式:深度、宽度、分辨率,组合起来按照一定规则缩放,从而提高网络的效果。EfficientNet在网络变大时效果提升明显,把精度上限进一步提升,成为了当前最强网络。
2023-01-07 11:25:23
1332
原创 Pytorch CIFAR10图像分类 ZFNet篇
首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。
2023-01-05 11:44:35
978
1
原创 【学习打卡07】 可解释机器学习笔记之Shape+Lime代码实战
在这次任务中,主要学习到了Shap和Lime工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。使用CAM和Captum工具包,可以减少我们很多很多的代码量,并且能快速使用,快速应用在自己的任务中、在经过一个多星期的学习,也是需要这种代码实战告诉我们,这些应用是全面且方方面面的,这样就不会空读理论,这样可以让我们有机会将理论和实践结合起来,希望后续能够将XAI和Lime运用到我的领域中,学习到更多的知识。
2022-12-25 23:05:01
1363
原创 【学习打卡05】可解释机器学习笔记之CAM+Captum代码实战
在前面经过4个知识的学习之后,已经对可解释机器学习有了一定的了解,但是这些有什么用呢,最重要的当然是代码实战,所以这一部分学习的就是CAM和Captum的一些可视化的代码实战,能将理论和代码结合起来,方便我们理解和学习。,可以用pytorch训练自己的图像分类模型,基于torch-cam实现各个类别、单张图像、视频文件、摄像头实时画面的CAM可视化在这次任务中,主要学习到了CAM和Captum工具包的使用,在图像分类的基础上去解释他,知其然还要知其所以然。
2022-12-22 00:16:37
1744
原创 Pytorch CIFAR10图像分类 ZFNet篇
首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。
2022-12-19 12:24:44
854
2
原创 【学习打卡04】可解释机器学习笔记之Grad-CAM
其实 CAM 得到的效果已经很不错了,但是由于其需要修改网络结构并对模型进行重新训练,这样就导致其应用起来很不方便。CAM的缺点必须得有GAP层,否则得修改模型结构后重新训练只能分析最后一层卷积层输出,无法分析中间层仅限图像分类任务Grad-CAM解决了上述问题,基本思路和CAM是一致的,也是通过得到每对特征图对应的权重,最后求一个加权和。区别是求解权重的过程,CAM通过替换全连接层为GAP层,重新训练得到权重,而Grad-CAM另辟蹊径,用梯度的全局平均来计算权重。
2022-12-18 23:02:45
3300
原创 【学习打卡03】可解释机器学习笔记之CAM类激活热力图
一直以来,深度神经网络的可解释性都被大家诟病,训练一个神经网络被调侃为“炼丹”。所得的模型也像一个“黑盒”一样,给它一个输入,然后得到结果,却不知道模型是如何得出结论的,究竟学习到了什么知识。如果能将其训练或者推理过程可视化,那么可以对其更加深入的理解,目前深度神经网络可视化可以分为:可视化卷积核;可视化特征图;可视化激活热力图,也就是不同位置像素点对得出结果的影响程度图 神经网络可视化汇总。
2022-12-17 22:40:44
3715
1
原创 【学习打卡02】可解释机器学习笔记之ZFNet
首先简单介绍一下ZFNet吧,ZFNet来源于2013的Matthew D. Zeiler和Rob Fergus的Visualizing and Understanding Convolutional Networks论文,为什么叫ZFNet也很简单,作者的两个名的首字母加起来就是啦,这里也给出论文地址,有兴趣可以看看论文在 2013 年 ImageNet 大规模视觉识别挑战赛 (ILSVRC) 中,ZFNet 比 AlexNet 有了显着改进,成为众人瞩目的焦点。
2022-12-15 22:50:09
828
原创 【学习打卡01】可解释机器学习之导论
首先非常感谢同济子豪兄拍摄的可解释机器学习公开课,并且免费分享,这门课程,包含人工智能可解释性、显著性分析领域的导论、算法综述、经典论文精读、代码实战、前沿讲座。由B站知名人工智能科普UP主“同济子豪兄”主讲。 课程主页:https://github.com/TommyZihao/zihao_course/blob/main/XAI 一起打开AI的黑盒子,洞悉AI的脑回路和注意力,解释它、了解它、改进它,进而信赖它。知其然,也知其所以然。这里给出链接,倡导大家一起学习,别忘了给子豪兄点个关注哦。
2022-12-13 12:21:25
1075
原创 Paddle 点灯人 之 Tensor
Paddle点灯人这个专栏,我希望更多是给予部分已有深度学习基础亦或者是想快速部署应用的进行学习,这样利用paddle做出更简单更好的方法,因为如果从0开始写Paddle的使用和介绍,我相信paddle的文档已经很详细了,如果想从0开始学,可以查看所以我希望我基于此,更多的是为了,让大家在学习torch的同时,对paddle也有一定了解,可以使用paddle更便捷的部署在自己的项目中,这样能加快学习的效率,也可以免费使用paddle的GPU资源,有更好的产出和应用部署。
2022-12-09 20:25:08
1868
1
转载 Paddle 点灯人 之 10分钟快速上手Paddle
飞桨在下内置了计算机视觉(Computer Vision,CV)领域常见的数据集,如 MNIST、Cifar10、Cifar100、FashionMNIST 和 VOC2012 等。在本任务中,先后加载了 MNIST 训练集()和测试集(),训练集用于训练模型,测试集用于评估模型效果。
2022-12-08 17:07:39
770
2
原创 Paddle 点灯人 之 Paddle介绍
Paddle 是一个开源的深度学习框架,由百度推出。它包含了各种深度学习模型和工具,可以帮助开发者更快速、高效地构建和训练深度学习模型。Paddle 支持多种深度学习模型,包括卷积神经网络 (CNN)、循环神经网络 (RNN)、生成对抗网络 (GAN)、自动编码器 (AE) 等。它还提供了多种预训练模型,可以直接使用,满足各种不同应用场景的需求。Paddle 具有高度优化的计算图和高性能的 C++ 后端,可以有效加速模型的训练和推理。
2022-12-08 16:20:35
2908
原创 基于PaddleOCR的集装箱箱号检测识别
国际航运咨询分析机构 Alphaliner 在今年 3 月公布的一组数据,2021 年集装箱吞吐量排名前 30 的榜单中,上海港以 4702.5 万标箱的「成绩单」雄踞鳌头。较上一年同期,上海港集装箱吞吐量增长 8.1%与最近的竞争对手新加坡拉开了近 1000 万标准箱的差距全球百大集装箱港口,更是在 2021 年共完成集装箱吞吐量 6.76 亿 TEU。**如此大规模的集装箱数量,使得箱号识别的压力骤增,**传统的由人对集装箱号进行识别记录的方式成本高、效率低,运营条件落后。随着经济和社会的发展,在港口经
2022-11-22 21:00:59
2407
1
原创 第十四届蓝桥杯第二期模拟赛 【python】
答案仅供参考哦,不要全信哈哈,应该是全部完成,最后一题第十题应该也是标程,真不错!!!祝大家都能马到成功2022/11/22 模拟赛前5道填空题已更新完成,6-8题酌情写完,其他先放着,等有空看看2022/11/24 早上顺手把第9题写完了,只剩下第十题2022/11/24 不想空着,也用树状数组把最后第十题给解决了,完美收官。
2022-11-22 16:28:56
2046
8
原创 漫画风格迁移神器 AnimeGANv2:快速生成你的漫画形象
趁着有空的时间,给大家介绍一些有趣的项目吧,比如这个漫画风格迁移神器 AnimeGANv2,可以快速生成自己的漫画形象
2022-11-21 09:00:00
12846
原创 PyTorch中,18个速度和内存效率优化技巧
深度学习模型的训练/推理过程涉及很多步骤。在有限的时间和资源条件下,每个迭代的速度越快,整个模型的预测性能就越快。我收集了几个PyTorch技巧,以最大化内存使用效率和最小化运行时间。为了更好地利用这些技巧,我们还需要理解它们如何以及为什么有效。我首先提供一个完整的列表和一些代码片段,这样你就可以开始优化你的脚本了。然后我一个一个地详细地研究它们。对于每个技巧,我还提供了代码片段和注释,告诉你它是特定于设备类型(CPU/GPU)还是模型类型。
2022-11-20 20:53:28
1203
原创 服务器设置 SSH 通过密钥登录
今后,当你使用 PuTTY 登录时,可以在左侧的 Connection -> SSH -> Auth 中的 Private key file for authentication: 处选择你的私钥文件,然后即可登录了,过程中只需输入密钥锁码即可。这一部分相当于,将自己的公钥写到了ssh服务器中,写到authorized_keys中,这样只要有密钥对,就能正常连接,VScode也是。下面来讲解如何在 Linux 服务器上制作密钥对,将公钥添加给账户,设置 SSH,最后通过客户端登录。如此便完成了公钥的安装。
2022-11-20 18:42:45
1075
原创 Pytorch CIFAR10图像分类 MobileNetv2篇
MobileNet v2网络是由google团队在2018年提出的,**相比MobileNet V1网络,准确率更高,模型更小**。刚刚说了MobileNet v1网络中的亮点是DW卷积,那么在MobileNet v2中的亮点就是**Inverted residual block(倒残差结构)**,如下下图所示,左侧是ResNet网络中的残差结构,右侧就是MobileNet v2中的倒残差结构。**在残差结构中是1x1卷积降维->3x3卷积->1x1卷积升维,在倒残差结构中正好相反,是1x1卷积升维->3x
2022-11-20 11:20:05
1154
原创 Keras CIFAR-10 分类汇总篇
keras是python深度学习中常用的一个学习框架,它有着极其强大的功能,基本能用于常用的各个模型。接下来我会分别利用深度学习的方法,用Keras实现我们的CIFAR10的图像分类大概预计的模型有LeNet,AlexNet,VGG,GoogLeNet,ResNet,DenseNet,MobileNet,Vision Transformer, ResNeXt等,除此之外也会陆续补充希望这能够帮助初学深度学习的同学一个入门深度学习的项目和在这之中更加了解Keras和tensorflow和各个图像分类的
2022-11-15 08:47:39
611
原创 Pytorch CIFAR10图像分类 工具函数utils更新v2.0篇
对于上一版的工具函数utils.py,我认为可能来说,可视化的感觉还是不是很好,所以我就修改了一下我新的训练函数,为了兼容,参数基本相同,但是加入了tqdm来可视化进度条,这样也会更加的好看和直观,并且统一了一些代码的格式,使得代码稍微好看点,之前有时候有点乱,除此为了兼容一些情况,修改了部分代码,但是意义相同。如果想看上一版的工具函数utils.py,可以查看这篇博客。
2022-11-14 21:58:23
900
原创 Keras CIFAR-10图像分类 DenseNet 篇
Keras CIFAR-10图像分类 DenseNet 篇,之前的ResNet通过前层与后层的“短路连接”(Shortcuts),加强了前后层之间的信息流通,在一定程度上缓解了梯度消失现象,从而**可以将神经网络搭建得很深**。更进一步,DenseNet最大化了这种前后层信息交流,通过建立**前面所有层与后面层的密集连接**,实现了特征在通道维度上的复用,使其可以在参数与计算量更少的情况下实现比ResNet更优的性能。
2022-11-14 09:00:00
375
原创 Keras CIFAR-10图像分类 VGG 篇
VGG 是一个很经典的卷积神经网络结构,是由 AlexNet 改进的,相比于 AlexNet,主要的改变有两个地方:使用 3 x 3 卷积核代替 AlexNet 中的大卷积核,使用 2 x 2 池化核代替 AlexNet 的 3 x 3 池化核- VGGNet 有很多类型,论文中提出了 4 种不同层次的网络结构(从 11 层到 19 层)- VGG 有很多优点,最本质的特点就是用小的卷积核(3x3)代替大的卷积核,2个 3x3 卷积堆叠等于1个 5x5 卷积,3 个 3x3 堆叠等
2022-11-13 08:41:39
595
原创 Keras CIFAR-10图像分类 ResNet 篇
当大家还在惊叹 GoogLeNet 的 inception 结构的时候,微软亚洲研究院的研究员已经在设计更深但结构更加简单的网络 ResNet,并且凭借这个网络斩获当年ImageNet竞赛中分类任务除了用pytorch可以进行图像分类之外,我们也可以利用tensorflow来进行图像分类,其中利用tensorflow的后端keras更是尤为简单,接下来我们就利用keras对CIFAR10数据集进行分类。keras是python深度学习中常用的一个学习框架,它有着极其强大的功能,基本能用于常用的各个模型。
2022-11-13 08:40:40
910
原创 第十四届蓝桥杯第一期模拟赛 python
蓝桥杯官方给了一个机会给我们可以尝试这个第一期模拟赛,那我们就试一下吧,学习学习一下,也给大家一点借鉴嘻嘻,也都不一定对哦,仅供参考。2022/11/8,填空题已完成2022/11/9,已做678,剩下9,102022/11/12,9更新2022/11/16,10更新,已全部完成2022/11/17,更新2不用库的做法
2022-11-09 13:09:13
10794
43
原创 GAN Step By Step -- Step6 LSGAN
LSGANs 这篇经典的论文主要工作是 把交叉熵损失函数换做了最小二乘损失函数 ,这样做作者认为改善了传统 GAN 的两个问题,即传统 GAN 生成的图片质量不高,而且训练过程十分不稳定。LSGANs 试图使用不同的距离度量来构建一个更加稳定而且收敛更快的,生成质量高的对抗网络。
2022-10-13 08:23:11
484
原创 GAN Step By Step -- Step5 ACGAN
ACGAN的全称叫Auxiliary Classifier Generative Adversarial Network,翻译过来很简单,就是带有辅助分类器的GAN其实他的思想和CGAN很想,也是利用label的信息作为噪声的输入的条件概率,但是相比较于CGAN,ACGAN在设计上更为巧妙,他很好地利用了判别器使得不但可以判别真假,也可以判别类别,通过对生成图像类别的判断,判别器可以更好地传递loss函数使得生成器能够更加准确地找到label对应的噪声分布。
2022-10-05 08:00:00
1055
原创 GAN Step By Step -- Step4 CGAN
CGAN的全称叫,其实从这个名字来看,与正常的GAN比,多了一个Conditional,condition的意思就是条件,正常的GAN来说,就是通过随机噪声生成图片即可,但是对于CGAN来说,加了一些简单的条件约束,输入了标签,指定去生成特定标签的图片。我们也可以看一下两者的结构,对于GAN来说,两者的区别就是多了一个c。用一句话来总结CGAN,把标签一起送进生成器和判别器,让他们根据标签来生成/判别结果。
2022-10-03 08:00:00
867
原创 GAN Step By Step -- Step3 DCGAN
DCGAN,全称叫Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks顾名思义,就是在生成器和判别器特征提取层用卷积神经网络代替了原始GAN中的多层感知机。为什么这样提出呢,我们从摘要可以看到,因为CNN在supervised learning 领域取得了非常了不起的成就(比如大规模的图片分类,目标检测等等),但是在unsupervised learning领域却没有特
2022-09-30 08:00:00
389
原创 GAN Step By Step -- Step2 GAN的详细介绍及其应用
上一次已经介绍了一下GAN的基本框架和基本公式GAN 算法有数百种之多,大家对于 GAN 的研究呈指数级的上涨,目前每个月都有数百篇论坛是关于对抗网络的。如果你对 GANs 算法感兴趣,可以在 「[GANs动物园](https://github.com/hindupuravinash/the-gan-zoo)」里查看几乎所有的算法。我们为大家从众多算法中挑选了10个比较有代表性的算法,技术人员可以看看他的论文和代码。
2022-09-29 08:00:00
929
原创 GAN Step By Step -- Step1 GAN介绍
生成对抗网络GenerativeANetwork,简称GAN)是非监督式学习的一种方法,通过让两个神经网络相互博弈的方式进行学习。该方法由伊恩·古德费洛等人于2014年提出。[1]生成对抗网络由一个生成网络与一个判别网络组成。生成网络从潜在空间(latent space)中随机采样作为输入,其输出结果需要尽量模仿训练集中的真实样本。判别网络的输入则为真实样本或生成网络的输出,其目的是将生成网络的输出从真实样本中尽可能分辨出来。而生成网络则要尽可能地欺骗判别网络。
2022-09-28 12:28:19
1596
原创 《30天吃掉那只 TensorFlow2.0》 5-1 数据管道Dataset
如果需要训练的数据大小不大,例如不到1G,那么可以直接全部读入内存中进行训练,这样一般效率最高。但如果需要训练的数据很大,例如超过10G,无法一次载入内存,那么通常需要在训练的过程中分批逐渐读入。使用 tf.data API 可以构建数据输入管道,轻松处理大量的数据,不同的数据格式,以及不同的数据转换。
2022-09-17 08:30:00
225
1
原创 《30天吃掉那只 TensorFlow2.0》五、TensorFlow的中阶API
如果把模型比作一个房子,那么中阶API就是【模型之墙】。优化器(tf.keras.optimizers)回调函数(tf.keras.callbacks)特征列(tf.feature_column)评估函数(tf.keras.metrics)损失函数(tf.keras.losses)模型层(tf.keras.layers)数据管道(tf.data)激活函数(tf.nn)
2022-09-16 18:00:00
305
原创 《30天吃掉那只 TensorFlow2.0》4-5 AutoGraph和tf.Module
有三种计算图的构建方式:静态计算图,动态计算图,以及Autograph。TensorFlow 2.0主要使用的是动态计算图和Autograph。动态计算图易于调试,编码效率较高,但执行效率偏低。静态计算图执行效率很高,但较难调试。而Autograph机制可以将动态图转换成静态计算图,兼收执行效率和编码效率之利。当然Autograph机制能够转换的代码并不是没有任何约束的,有一些编码规范需要遵循,否则可能会转换失败或者不符合预期。前面我们介绍了Autograph的编码规范和Autogr
2022-09-16 13:31:43
199
原创 MAE实现及预训练可视化 (CIFAR-Pytorch,代码全部开源)
MAE实现及预训练可视化 (CIFAR-Pytorch)自去年 11 月份恺明大神提出 MAE 来,大家都被 MAE 简单的实现、极高的效率和惊艳的性能所吸引。近几个月,大家也纷纷 follow 恺明的工作,在 MAE 进行改进(如将 MAE 用到层次 Transformer 结构)或将 MAE 应用于图片之外的数据(如视频、多模态)。这是何凯明大佬的又一力作,CV 圈子基本都晓得,当时火爆了整个圈子,所以今天尝试在cifar数据集上进行搭建。
2022-09-15 08:53:11
5224
18
原创 Pytorch CIFAR10图像分类 Vision Transformer(ViT) 篇
Vision Transformer(ViT)简介近些年,随着基于自注意(Self-Attention)结构的模型的发展,特别是Transformer模型的提出,极大地促进了自然语言处理模型的发展。由于Transformers的计算效率和可扩展性,它已经能够训练具有超过100B参数的空前规模的模型。ViT则是自然语言处理和计算机视觉两个领域的融合结晶。在不依赖卷积操作的情况下,依然可以在图像分类任务上达到很好的效果。
2022-09-08 12:00:00
6810
11
原创 Selenium + Chrome带配置项启动
在使用Selenium进行自动化时,WebDriver启动的浏览器(这里以Chrome为例)是一个纯净的、不带Chrome扩展的实例。而我们常常会对浏览器有些特殊的需求,就需要对WebDriver添加启动参数。
2022-09-04 10:48:11
1731
原创 Python + Selenium + Chrome Driver 自动化点击+评论+刷弹幕(仅供学习)
首先说明,这篇博文 仅供学习!仅供学习!仅供学习!不要拿去做其他事,封号概不负责!!!首先先说明刷评论或者阅读量是不行的,当我们认同这一点以后,我们再一起讨论一下技术对于这个自动化评论来说,我有时候在想,是否有什么方法,可以自动发弹幕或者对一些博文进行自动评论,有什么方法呢
2022-09-04 00:03:41
1879
原创 Keras CIFAR-10图像分类 GoogleNet 篇
GoogLeNet在2014年由Google团队提出(与VGG网络同年,注意GoogLeNet中的L大写是为了致敬LeNet),斩获当年ImageNet竞赛中Classification Task (分类任务) 第一名。原论文名称是《Going deeper with convolutions》,下面是网络结构图。Inception v1网络是一个精心设计的22层卷积网络,并提出了具有良好局部特征结构Inception模块,即对特征并行地执行多个大小不同的卷积运算与池化,最后再拼接到一起。由于1×1、3×
2022-09-03 12:00:00
1046
23
八种最常用的GAN生成式对抗网络代码框架
2022-04-13
【程序员面试必备】动画详解十大经典排序算法(内含代码)
2022-04-13
Coursera-ML-using-matlab-python.rar
2022-04-13
对于吴恩达机器学习的学习笔记
2022-04-13
深度学习中的目标检测YOLOX代码以及权重
2022-03-23
Pytorch对CIFAR10的图像分类全套代码(包含多个模型)
2022-03-23
Kaggle猫狗大战dogs-vs-cats数据集全套以及图像分类代码
2022-03-23
tensorflow-2.3.0-cp38-cp38-win_amd64_cpu_and_gpu.rar
2021-05-13
cifar-10-python.tar
2021-05-13
img_align_celeba2.zip
2021-04-06
img_align_celeba1.zip
2021-04-06
MNIST_data.rar
2021-04-05
AI古诗生成器,唐诗,五言绝句自动生成(包含预训练模型,数据集,全套代码)
2023-05-30
基于CIFAR10 MAE的实现(含模型权重,TensorBoard可视化等)
2022-10-12
口罩目标检测数据集(已标注好,VOC格式)
2022-05-22
CRNN完整源码实现--用PyTorch攻陷文字识别
2022-05-18
Keras对CIFAR10的图像分类全套代码(包含多个模型)
2022-05-17
大数据驱动的深度模型在图像分类中的应用(VGG16+VGG19图像分类,源码结果都可运行)
2022-05-17
GAN探索之数字样本生成(Pytorch实现LeNet网络进行对抗比较)
2022-05-17
Implements of MATAB神经网络30个案例分析
2022-05-15
中文情感分析 Python
2022-05-15
机器学习、NLP面试中常考到的知识点和代码实现
2022-05-15
利用Python opencv进行车牌识别
2022-05-13
Keras和Tensorflow 对CIFAR10的图像分类(包含多个模型)
2022-05-13
快速上手Transfomer全套资料-为 Jax、PyTorch 和 TensorFlow 打造的先进的自然语言处理
2022-05-11
数学公式识别 Math Formula OCR 识别LaTex
2022-05-07
利用CNN进行字符型图片验证码识别
2022-05-06
手写算法实现xgboost(并与库模型进行比较)
2022-05-06
10行代码搞定一个决策树
2022-05-06
Pytorch实现数字对抗样本生成全套代码(GAN)
2022-05-06
利用pytorch对CIFAR数据进行图像分类(包含全套代码和10+个模型的实现)
2022-05-06
DenseNet-Cifar10 基于keras
2022-05-06
pytorch1.10版本训练结果很差
2022-03-26
实现CSDN自动登录出现的问题
2021-07-26
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅