
笔记
文章平均质量分 76
笔记
风信子的猫Redamancy
在校本科大学生 B站up小白风信子的猫Redamancy 个人博客地址: https://kedreamix.github.io/
2022第十三届蓝桥杯PythonB组省一等奖,以及国赛一等奖
2022年第十二届MathorCup高校数学建模挑战赛 研究生组 二等奖
对计算机视觉,人工智能,以及机器学习等方面感兴趣
放弃不难 但坚持一定很酷
成功的法则极为简单,但简单并不代表容易
希望自己在这条路上,不孤单,不言弃,不言败
Stay Hungry,Stay Foolish
有时候没有及时回私信等等,可以发邮件咨询,1016617094@qq.com,你们的问题我都会认真看和回答的
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
nvidia-smi报错(重装Nvidia驱动)
解决方案:重装NVIDIA驱动(非cuda),拷贝到Linux某个目录后先改权限。下载你自己显卡对应的驱动。原创 2022-08-05 23:38:16 · 5742 阅读 · 0 评论 -
Coggle 30 Days of ML【打卡】广告-信息流跨域ctr预估
广告推荐主要基于用户对广告的历史曝光、点击等行为进行建模,如果只是使用广告域数据,用户行为数据稀疏,行为类型相对单一。而引入同一媒体的跨域数据,可以获得同一广告用户在其他域的行为数据,深度挖掘用户兴趣,丰富用户行为特征。引入其他媒体的广告用户行为数据,也能丰富用户和广告特征。本赛题希望选手基于广告日志数据,用户基本信息和跨域数据优化广告ctr预估准确率。目标域为广告域,源域为信息流推荐域,通过获取用户在信息流域中曝光、点击信息流等行为数据,进行用户兴趣建模,帮助广告域CTR的精准预估。...........原创 2022-08-04 10:48:11 · 1901 阅读 · 1 评论 -
Python 3 新特性:类型注解
这样的好处是有极大的灵活性,但坏处就是对于别人代码,无法一眼判断出参数的类型,IDE也无法给出正确的提示。因为这些注解而提供额外的校验,没有任何的类型检查工作。也就是说,这些类型注解加不加,对你的代码来说。这些新特性也许你并不会在代码中使用,不过当你在别人的代码中看到时,请按照对方的约定进行赋值或调用。当然,也不排除Python以后的版本把类型检查做到解释器里,谁知道呢。我们知道Python是一种动态语言,变量以及函数的参数是。然后特别要强调的是,Python解释器。但同样,这些仅仅是“...原创 2022-07-27 15:15:43 · 5543 阅读 · 0 评论 -
Tensor to img && imge to tensor (pytorch的tensor转换)
在pytorch中经常会遇到图像格式的转化,例如将PIL库读取出来的图片转化为Tensor,亦或者将Tensor转化为numpy格式的图片。而且使用不同图像处理库读取出来的图片格式也不相同,因此,如何在pytorch中正确转化各种图片格式(PIL、numpy、Tensor)是一个在调试中比较重要的问题。本文主要说明在pytorch中如何正确将图片格式在各种图像库读取格式以及tensor向量之间转化的问题。......原创 2022-07-23 12:12:18 · 7290 阅读 · 0 评论 -
这是一张机器&深度学习代码速查表
这是一张机器&深度学习代码速查表原创 2022-07-23 11:45:00 · 2358 阅读 · 0 评论 -
视觉神经网络模型优秀开源工作:PyTorch Image Models(timm)库
PyTorch Image Models(timm) 是一个优秀的图像分类 Python 库,其包含了大量的图像模型(Image Models)、Optimizers、Schedulers、Augmentations 等等.除了使用进行预训练以外,还有一个常见的预训练模型库,叫做,这个库是由来自加拿大温哥华Ross Wightman创建的。里面提供了许多计算机视觉的SOTA模型,可以当作是torchvision的扩充版本,并且里面的模型在准确度上也较高。在本章内容中,我们主要是针对这个库的预训练模型的使用做原创 2022-07-16 18:15:51 · 7573 阅读 · 0 评论 -
智能硬件语音控制的时频图分类挑战赛2.0(思路以及结果,目前top5)
这里记录一下,有关我学习的一些思路和过程,在2022年讯飞的开发者大赛中做的一些比赛,以及去得的一些成功。原创 2022-07-16 14:40:40 · 2434 阅读 · 3 评论 -
Pytorch自动混合精度(AMP)介绍与使用 - autocast和Gradscaler
Pytorch自动混合精度(AMP)介绍与使用文章目录Pytorch自动混合精度(AMP)介绍与使用背景:一.什么是AMP?二、为什么要使用AMP?三.如何使用AMP?四. 注意事例:背景:pytorch从1.6版本开始,已经内置了torch.cuda.amp,采用自动混合精度训练就不需要加载第三方NVIDIA的apex库了。本文主要从三个方面来介绍AMP:一.什么是AMP?二.为什么要使用AMP?三.如何使用AMP?四. 注意事项一.什么是AMP?默认情况下,大多数深度学习框架都采用32原创 2022-04-24 00:26:07 · 4893 阅读 · 0 评论 -
分享使用谷歌Colab 常用小tips, 玩转Google Colab
分享使用谷歌Colab 常用小tips(真的很有用!!!)文章目录分享使用谷歌Colab 常用小tips(真的很有用!!!)什么是Google Colab挂载谷歌云盘命令1.wget下载命令2.git clone深度学习库3.Linux 复制命令4.解压unzip命令5.建立软连接6.运行python文件防掉线措施总结colab实际上就是一个可以白嫖GPU的linux服务器,所以里面其实有很多东西是很有用的,如果单纯去利用colab的一些命令,还是慢了,linux真的yyds,现在来学习一下。如果遇到原创 2022-04-23 09:40:01 · 3781 阅读 · 0 评论 -
Git clone 克隆私有项目
Git clone 克隆私有项目遇到一个项目,设为私有,想设置一个方法可以clone私有项目,就设置了以下笔记1. git 常规克隆这个就很多了,随便找个github都可以在 GitHub.com 上,导航到仓库的主页面。在文件列表上方,单击 Code(代码)。要使用 HTTPS 克隆仓库,请在“Clone with HTTPS(使用 HTTPS 克隆)”接着打开 Git Bash,将当前的工作目录更改为您想要存储克隆目录的位置。键入 git clone,然后粘贴先前复制的原创 2022-04-22 10:52:06 · 19253 阅读 · 2 评论 -
Pytorch Note57 Pytorch可视化网络结构
Pytorch Note57 Pytorch可视化网络结构文章目录Pytorch Note57 Pytorch可视化网络结构使用print打印torchinfo可视化安装torchinfo或者torchsummary使用torchinfo全部笔记的汇总贴:Pytorch Note 快乐星球随着深度神经网络做的的发展,网络的结构越来越复杂,我们也很难确定每一层的输入结构,输出结构以及参数等信息,这样导致我们很难在短时间内完成debug。因此掌握一个可以用来可视化网络结构的工具是十分有必要的。类似的功能原创 2022-04-20 12:02:36 · 2469 阅读 · 1 评论 -
腾讯云从业者资料分享超全(呕心沥血整理)
云计算从业者考试笔记由于最近需要考腾讯云从业者证考试,所以就整理一些资料用来学习,还有部分资料放在了百度网盘,介绍放在B站,有个视频讲解了部分,可以自取腾讯云认证培训相关入口腾讯云从业者 : https://cloud.tencent.com/edu/training/cert/detail?type=practitioner腾讯云从业认证大纲及考试知识点占比腾讯与从业者认证,考试内容60题单选,20题多选 ,考试时长90分钟知识模块简介考试占比(腾讯云从业者认证)云计算原创 2022-03-23 09:00:00 · 6241 阅读 · 5 评论 -
Pytorch 各个GPU版本CUDA和cuDNN对应版本
pytorch 不同版本对应的cudatorch、torchvision、cuda 、python对应版本匹配,参照官网https://pytorch.org/get-started/previous-versions/CUDA与显卡驱动:https://docs.nvidia.com/cuda/cuda-toolkit-release-notes/index.html原创 2021-12-17 22:27:04 · 71630 阅读 · 3 评论 -
TensorFlow各个GPU版本CUDA和cuDNN对应版本
TensorFlow各个GPU版本CUDA和cuDNN对应版本原创 2021-12-17 22:18:16 · 5824 阅读 · 3 评论 -
神奇的streamlit (哇 原来深度学习还可以这样玩)
你是否还是为不懂深度学习而烦恼,你是否不知道不同的深度学习参数有什么区别,你是否还是思考什么优化器比较好,你是否不太知道激活函数和损失函数的选择which better,你是否还在思考要去哪里找代码并且去在编译器上跑出一个好丑的结果,那就快看Streamlit,他可能让本身你不懂机器学习的同学也能测试出很好的结果哦,体验深度学习的魅力。原创 2021-12-08 13:34:11 · 9089 阅读 · 2 评论 -
OpenCV 调用手机摄像头
由于我喜欢做计算机视觉的深度学习的东西,所以对于目标检测和图像分类这样的项目,我想将其用入视频等等中。我想啊想,居然发现一个好方法,我们只需要下载一个APP软件即可也就是!!! IP摄像头 ,啦啦啦啦啦,这是个好东西原创 2021-12-05 20:46:15 · 6730 阅读 · 5 评论 -
实时显示GPU的两种方法(灵机一动)
最近在跑程序的时候,我在想能不能实时显示我的GPU,而不是每次都在命令行输入一个nvidia-smi,虽然也能看到我们的GPU显存和GPU利用率,但是我想看到变化之类的,所以想了两个方法原创 2021-12-02 09:56:05 · 4946 阅读 · 2 评论 -
sklearn集成学习之VotingClassifier
在机器学习中,我们可以对KNN、逻辑回归、SVM、决策树、神经网络等预测的结果进行投票,少数服从多数最终决定预测结果。在sklearn中提供了一个Voting Classifier的方法进行投票。这是属于集成学习的一种。Voting Classifier分为Hard和Soft两种方式。原创 2021-12-01 09:08:24 · 10420 阅读 · 0 评论 -
蓝桥杯 ALGO-1005 数字游戏 python
蓝桥杯 ALGO-1005 数字游戏 python试题 算法训练 数字游戏资源限制时间限制:1.0s 内存限制:256.0MB问题描述给定一个1~N的排列a[i],每次将相邻两个数相加,得到新序列,再对新序列重复这样的操作,显然每次得到的序列都比上一次的序列长度少1,最终只剩一个数字。 例如: 3 1 2 4 4 3 6 7 9 16 现在如果知道N和最后得到的数字sum,请求出最初序列a[i],为1~N的一个排列。若有多种答案,则输出字典序最小的那一个。数据保证有解。原创 2021-11-26 16:45:00 · 10785 阅读 · 13 评论 -
Python 创建一维数组、二维数组和N维数组
Python 创建一维数组、二维数组和N维数组我们已经很熟悉在C++上创建一维二维数组了,那么如何在Python上创建二维数组呢>>> A = [0]*3>>> B = [[0]*2]*3这样就可以得到我们的一维数组和二维数组了,我们可以看一下结果>>> A[0, 0, 0]>>> B[[0, 0], [0, 0], [0, 0]]似乎好像这样的方法,就能很好的创建一个二维数组,但是,如果简单认为就这样就大错特错了原创 2021-11-24 23:07:58 · 6575 阅读 · 0 评论 -
设置随机种子复现Pytorch、TensorFlow结果
设置随机种子复现Pytorch、TensorFlow结果有时候在我们的学习过程中,我们对同一个代码怎么进行比较,怎么复现别人的结果然后我就想,因为我希望我的结果是可复现的,而不是很随机的,这样可以让人复现结果的时候更加容易,也更加方便这里我只记录了两个框架的,其中如果利用TensorFlow作为keras后端,那和TensorFlow是一样的Pytorch 设置随机种子Pytorch我们只需要在我们的代码上加上这几行torch.manual_seed(seed) # 为C原创 2021-11-24 14:00:00 · 1787 阅读 · 0 评论 -
数据的偏度和峰度——df.skew()、df.kurt()
数据的偏度和峰度——df.skew()、df.kurt()我们一般会拿偏度和峰度来看数据的分布形态,而且一般会跟正态分布做比较,我们把正态分布的偏度和峰度都看做零。如果我们在实操中,算到偏度峰度不为0,即表明变量存在左偏右偏,或者是高顶平顶这么一说。一.偏度(Skewness)Definition:是描述数据分布形态的统计量,其描述的是某总体取值分布的对称性,简单来说就是数据的不对称程度。。偏度是三阶中心距计算出来的。(1)Skewness = 0 ,分布形态与正态分布偏度相同。(2)Skewn原创 2021-11-14 13:33:32 · 2703 阅读 · 1 评论 -
1x1卷积的作用
1x1卷积的作用1. 前言 往往很多人喜欢把事情搞得复杂,显得高大上,却并不实用,殊不知有时候简单的想法才是最美的。就好像是一堆巧妙的数学公式推导,常常有某一个极简的数学公式在作支撑,奇技淫巧无处不在。此外,研究算法的乐趣之一就是存在这些神奇的地方。如果是自己发现会很有成就感,如果在别人的思想中发现也会产生共鸣。 今天要记录 CNN 中的 1x1 卷积的神奇之处,或者说有什么用?当然我承认,我也是之前被问到这个问题!!当时想法是因为 input 的 feature maps 是有 channel转载 2021-10-17 13:35:17 · 1260 阅读 · 0 评论 -
git rebase 操作失误回退到上一步
git rebse 操作失误回退到上一步git rebase 误操作导致文件丢失撤销并恢复文件第一步执行 git reflog查看本地操作记录找到本次rebase之前的操作id 例如:89356d0第二步 执行恢复命令git reset --hard 89356d0出现提示则输入y确认...原创 2021-09-18 09:17:25 · 4749 阅读 · 2 评论 -
Python Matplotlib 画图显示中文
Python Matplotlib 画图显示中文在我们用python画图的时候,有时候python内部是显示不出中文的,那么我们有一种方法可以解决这个问题,不用我们全部转化为英文(当然转化为英文可能更高级一点 )第一种方法首先我们可以利用python的matplotlib配置参数就可以实现我们的中文显示import matplotlib.pyplot as pltplt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签plt.rcParams[原创 2021-09-18 09:09:57 · 15130 阅读 · 2 评论 -
np.squeeze 的用法
我在可视化我的数据集的时候,我发现有些不同比如我同样的代码可视化CIFAR10数据集是没有问题的但是我去可视化MINST这种没有RGB数据集的时候,我发现用Pytorch的loader不能直接可视化我发现,这里面可视化我们需要np.squeezesqueeze 函数:从数组的形状中删除单维度条目,即把shape中为1的维度去掉所以如果我们的图片为28x28x1,我们可以用这个函数直接可视化图片>>> a = e.reshape(1,1,10)>>> aar原创 2021-07-23 17:44:50 · 6711 阅读 · 0 评论 -
np.ndarray与torch.Tensor之间的转化 (图像的区别)
np.ndarray转为torch.Tensor在深度学习中,原始图像需要转换为深度学习框架自定义的数据格式,在pytorch中,需要转为torch.Tensor。pytorch提供了torch.Tensor 与numpy.ndarray转换为接口:方法名作用torch.from_numpy(xxx)numpy.ndarray转为torch.Tensortensor1.numpy()获取tensor1对象的numpy格式数据torch.Tensor 高维矩阵的表示:原创 2021-07-23 17:31:31 · 3169 阅读 · 0 评论 -
Pytorch学习笔记
class torchvision.transforms.RandomCrop(size, padding=0)切割中心点的位置随机选取。size可以是tuple也可以是Integer。class torchvision.transforms.RandomHorizontalFlip随机水平翻转给定的PIL.Image,概率为0.5。即:一半的概率翻转,一半的概率不翻转。.转为tensor:transforms.ToTensorclass torchvision.transforms.ToTen.原创 2021-05-20 15:07:20 · 12412 阅读 · 0 评论 -
新冠疫情形势气泡图(python还有这么可爱的气泡图哦)
全球疫情及疫苗接种进度可视化之一--全球疫情形势动态地图展示安装plotly库全球疫情形势定义工具函数抽取数据绘制动态图表重抽样数据抽取、整理与可视化展示抽取原始数据按周重抽样气泡图可视化气泡图进阶2020年底以来,欧美、印度、中国、俄罗斯等多国得制药公司纷纷推出了针对新冠肺炎的疫苗,这部分要分析了2020年以来全球疫情形势、各类疫苗在全球的地理分布、疫苗在各国的接种进度进行可视化展示,以期给读者提供当前疫情以及未来疫情防控的直观展示。安装plotly库因为这部分内容主要是用plotly库进行数据动态原创 2021-05-09 20:12:01 · 15364 阅读 · 2 评论 -
全球疫情形势动态地图展示(超帅超好玩的python动图)
2020年底以来,欧美、印度、中国、俄罗斯等多国得制药公司纷纷推出了针对新冠肺炎的疫苗,这部分要分析了2020年以来全球疫情形势、各类疫苗在全球的地理分布、疫苗在各国的接种进度进行可视化展示,以期给读者提供当前疫情以及未来疫情防控的直观展示。安装plotly库因为这部分内容主要是用plotly库进行数据动态展示,所以要先安装plotly库...原创 2021-05-08 18:38:37 · 20462 阅读 · 26 评论 -
词云进阶:神奇的stylecloud
词云进阶:神奇的stylecloudstylecloud介绍安装stylecloud简单的stylecloud自定义调色板stylecloud常用参数自定义文字颜色Stopwords好玩的stylecloud实例Hello World最基本的stylecloud自定义图标,调色板和背景增加梯度对文本使用特定的颜色非方形尺寸反转遮罩Twitter 图标使用Font Awesome Pro简单的FA stylecloudstylecloud介绍stylecloud基于wordcloud库,使用方法更简单一些原创 2021-05-05 17:05:52 · 16355 阅读 · 13 评论 -
多种好看好玩的词云例子Example
Give asymptotic upper and lower bounds for T(n)T(n)T(n) in each of the following recurrences. Assume that T(n)T(n)T(n) is constant for sufficiently small nnn. Make your bounds as tight as possible, and justify your answers.a. T(n)=4T(n/3)+nlgnT(n) = 4T(.原创 2021-05-05 13:19:04 · 14488 阅读 · 4 评论 -
词云可视化:四行代码从入门到精通
词云可视化:四行Python代码轻松上手到精通词云可视化:四行Python代码轻松上手到精通本课概要关于本课程不需要写代码------词云图片制作微信小程序安装本课程所需的Python第三方模块一行命令安装(推荐,适用于99.999%的情况)如果安装过程中报错(0.001%会发生)四行Python代码上手词云制作1号词云:《葛底斯堡演说》黑色背景词云(4行代码上手)子豪兄带你逐行读代码美化词云2号词云:面朝大海,春暖花开(配置词云参数)常用参数从外部文件读入文原创 2021-05-02 00:28:38 · 14293 阅读 · 5 评论 -
多元函数的泰勒展开Talor以及黑塞矩阵
一元函数在点xkx_kxk处的泰勒展开f(x)=f(xk)+(x−xk)f′(xk)+12!(x−xk)2f′′(xk)+onf(x) = f(x_k)+(x-x_k)f'(x_k)+\frac{1}{2!}(x-x_k)^2f''(x_k)+o^nf(x)=f(xk)+(x−xk)f′(xk)+2!1(x−xk)2f′′(xk)+on二元函数在(xk,yk)(x_k,y_k)(xk,yk)处的泰勒展开f(x,y)=f(xk,yk)+(x−xk)fx′(xk,yk)+(y−y..原创 2021-04-27 13:02:56 · 9920 阅读 · 0 评论 -
备战数学建模(Python)
Python之建模规划篇线性规划基本介绍线性规划的实例与定义线性规划问题的解的概念求解线性规划的Matlab 解法Python Scipy库实现Python plup库实现一个十分有趣的例子整数规划基本介绍整数规划的分类整数规划的特点求解方法分类0 - 1 型整数规划蒙特卡洛法 (随机取样法)整数线性规划的计算机求解分枝定界法Python 实现 (分支定界代码)非线性规划基本介绍线性规划与非线性规划的区别非线性规划的Matlab解法Python 解决非线性规划1、等式约束下的拉格朗日乘子法2、Python实原创 2021-01-22 10:47:45 · 8422 阅读 · 0 评论 -
Python之建模规划篇--非线性规划
Python之建模规划篇--非线性规划非线性规划基本介绍线性规划与非线性规划的区别非线性规划的Matlab解法Python 解决非线性规划1、等式约束下的拉格朗日乘子法2、Python实现对带约束的非线性规划求解Python编程实现求解python使用SciPy库实现求解问题结果对比样例1样例2非线性规划基本介绍如果目标函数或约束条件中包含非线性函数,就称这种规划问题为非线性规划问题。一般说来,解非线性规划要比解线性规划问题困难得多。而且,也不象线性规划有单纯形法这一通用方法,非线性规划目前还没有原创 2021-01-22 10:40:32 · 29927 阅读 · 8 评论 -
Python之建模规划篇--整数规划
Python之建模规划篇--整数规划整数规划基本介绍整数规划的分类整数规划的特点求解方法分类0 - 1 型整数规划蒙特卡洛法 (随机取样法)整数线性规划的计算机求解分枝定界法Python 实现 (分支定界代码)整数规划基本介绍规划中的变量(部分或全部)限制为整数时,称为整数规划。若在线性规划模型中,变量限制为整数,则称为整数线性规划。目前所流行的求解整数规划的方法,往往只适用于整数线性规划。目前还没有一种方法能有效地求解一切整数规划。整数规划的分类如不加特殊说明,一般指整数线性规划。对于整数线性规原创 2021-01-22 10:38:46 · 24013 阅读 · 2 评论 -
Python之建模规划篇--线性规划
数学建模Python之建模规划篇线性规划介绍线性规划的实例与定义线性规划问题的解的概念求解线性规划的Matlab 解法Python Scipy库实现Python plup库实现十分有趣的例子由于美国大学生数学建模大赛很快就要开赛了,所以我就打算在这几天内,好好的看看《数学建模算法与应用》这本书,里面很多都是用matlab实现的,我还想尝试着用python去实现它的算法Python之建模规划篇线性规划介绍在人们的生产实践中,经常会遇到如何利用现有资源来安排生产,以取得最大经济效益的问题。此类问题构成原创 2021-01-21 15:03:05 · 22533 阅读 · 3 评论