联邦学习 — 激励机制综述
背景介绍联邦学习通常采用参数服务器体系结构,其中客户端训练由参数服务器下发的本地模型。一个典型的联邦学习过程包含很多训练轮次。在每一轮中,客户端从参数服务器下载新的全局模型,并分别用自己的数据训练一个本地模型。然后,客户端将训练后的模型上传到参数服务器,并聚合出一个新的全局模型。联邦学习系统严重依赖于客户端的本地模型质量。然而,在没有足够回报的情况下,客户端可能不愿意参与或分享他们的模型。例如,当客户参与联邦学习时,不可避免的消耗他的设备的资源,包括计算资源、通信资源和能源。此外,联邦学习框架面临着巨







