WWW2021 | 图机器学习论文一览

本文梳理了WWW2021会议上关于图机器学习的研究成果,涵盖图表示学习、推荐系统、知识图谱、冷启动问题、生成对抗网络等领域,分享了相关论文亮点,提供了一个了解最新研究的窗口。

WWW2021

上一篇公众号的文章由于字体颜色设置的问题,只能在微信深色背景模式下阅读QAQ。由于公众号每天只能群发一次,所以这篇文章只能晚一天和大家见面啦,在此小编和大家说一声抱歉~

WWW (这两年改名叫TheWebConf了)会议是由图灵奖得主Tim创办的学术会议,内容涵盖互联网相关的一切主题。中国计算机协会将其认证为CCF-A类顶级会议,难度极大。中一篇吹一年。

本文梳理WWW2021有关图机器学习领域的最新研究成果,供大家参考。

  • 图表示学习

  • 推荐系统

  • 知识图谱

  • 冷启动问题

  • 生成对抗网络

  • 对话AI

  • 医疗

WWW2021的论文可于官网上查看,官网上根据主题将不同的论文映射到向量空间中,这样可以看到不同论文之间的相似度,而且还能根据标签、标题来搜索想看的论文哦~

地址:https://www2021.thewebconf.org/program/papers-program/

图表示学习

图,如社交网络、单词共存网络和通信网络,广泛地存在于各种现实应用中。通过对它们的分析,我们可以深入了解社会结构、语言和不同的交流模式,因此图一直是学界研究的热点。真实的图(网络)往往是高维、难以处理的,20世纪初,研究人员发明了图嵌入算法,对真实的图进行降维处理。他们首先根据实际问题构造一个D维空间中的图,然后将图的节点嵌入到d(d<<D)维向量空间中。嵌入的思想是在向量空间中保持连接的节点彼此靠近。

本次WWW带来了6篇有关图表示学习的论文,内容涉及异质图上节点表示的优化、基于子图层次选择和嵌入的图神经网络、解耦GCN的理论分析等,如下所示:

  1. Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks

  2. SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism

  3. On the Equivalence of Decoupled Graph Convolution Network and Label Propagation

  4. Knowledge Embedding Based Graph Convolutional Network

  5. Rumor Detection with Field of Linear and Non-Linear Propagation

  6. Multi-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值