WWW2021
上一篇公众号的文章由于字体颜色设置的问题,只能在微信深色背景模式下阅读QAQ。由于公众号每天只能群发一次,所以这篇文章只能晚一天和大家见面啦,在此小编和大家说一声抱歉~
WWW (这两年改名叫TheWebConf了)会议是由图灵奖得主Tim创办的学术会议,内容涵盖互联网相关的一切主题。中国计算机协会将其认证为CCF-A类顶级会议,难度极大。中一篇吹一年。
本文梳理WWW2021有关图机器学习领域的最新研究成果,供大家参考。
图表示学习
推荐系统
知识图谱
冷启动问题
生成对抗网络
对话AI
医疗

WWW2021的论文可于官网上查看,官网上根据主题将不同的论文映射到向量空间中,这样可以看到不同论文之间的相似度,而且还能根据标签、标题来搜索想看的论文哦~
地址:https://www2021.thewebconf.org/program/papers-program/
图表示学习
图,如社交网络、单词共存网络和通信网络,广泛地存在于各种现实应用中。通过对它们的分析,我们可以深入了解社会结构、语言和不同的交流模式,因此图一直是学界研究的热点。真实的图(网络)往往是高维、难以处理的,20世纪初,研究人员发明了图嵌入算法,对真实的图进行降维处理。他们首先根据实际问题构造一个D维空间中的图,然后将图的节点嵌入到d(d<<D)维向量空间中。嵌入的思想是在向量空间中保持连接的节点彼此靠近。
本次WWW带来了6篇有关图表示学习的论文,内容涉及异质图上节点表示的优化、基于子图层次选择和嵌入的图神经网络、解耦GCN的理论分析等,如下所示:
Self-Supervised Learning of Contextual Embeddings for Link Prediction in Heterogeneous Networks
SUGAR: Subgraph Neural Network with Reinforcement Pooling and Self-Supervised Mutual Information Mechanism
On the Equivalence of Decoupled Graph Convolution Network and Label Propagation
Knowledge Embedding Based Graph Convolutional Network
Rumor Detection with Field of Linear and Non-Linear Propagation
Multi-

本文梳理了WWW2021会议上关于图机器学习的研究成果,涵盖图表示学习、推荐系统、知识图谱、冷启动问题、生成对抗网络等领域,分享了相关论文亮点,提供了一个了解最新研究的窗口。
最低0.47元/天 解锁文章
808

被折叠的 条评论
为什么被折叠?



