5.11 数据结构——哈夫曼树的构造算法

5.11.1 构造哈夫曼树的方法

(1)根据n个给定的权值\left \{ W_{1}, W_{2}, ..., W_{n} \right \}构成n棵二叉树的森林F = \left \{ T_{1}, T_{2}, ..., T_{n} \right \},其中T_{i}只有一个带权为W_{i}的根结点。

(2)在F中选取两棵根结点的权值最小的树作为左右子树,构造一棵新的二叉树,且设置新的二叉树的根结点的权值为其左右子树上根结点的权值之和。

(3)在F中删除这两棵树,同时将新得到的二叉树加入森林中。

(4)重复(2)和(3),直到森林中只有一棵树为止,这棵树就是哈夫曼树。

例如:有4个结点a、b、c、d,权值分别为7、5、2、4,构造哈夫曼树。

 

 哈夫曼树的结点的度数为0或2,没有度为1的结点。

包含n个叶子结点的哈夫曼树中共有2n-1个结点,因为包含n棵树的森林要经过n-1次合并才能形成哈夫曼树,共产生n-1个新结点。

5.11.2 哈夫曼树构造算法的实现

采用顺序存储结构——一维数组

结点结构类型定义:

typedef struct
{
    int weight;
    int parent, lch, rch;
}HTNode, *HuffmanTree;

哈夫曼树中共有2n-1个结点,不用0下标,数组大小为2n。

1、初始化HT[1,...,2n-1];lch = rch = parent = 0;

2、输入初始n个叶子结点,置HT[1, ..., n]的weight值;

3、进行以下n-1次合并,依次产生n-1个结点HT[i],i = n+1, ..., 2n-1;

(1)在HT[1, ..., i-1]中选两个未被选过(从parent == 0的结点中选)的weight值最小的两个结点HT[s1]和HT[s2],s1、s2为两个最小结点的下标;

(2)修改HT[s1]和HT[s2]的parent值,HT[s1].parent = i,HT[s2].parent = i;

(3)修改新产生的HT[i]:

        HT[i].weight = HT[s1].weight + HT[s2].weigth;

        HT[i].lch = s1; 

        HT[i].rch = s2;

void CreateHuffmanTree(HuffmanTree HT, int n)
{
    if (n <= 0)
        return;

    int s1,s2;

    m = 2*n - 1; //数组共有2n-1个元素
    HT = (HuffmanTree)malloc(sizeof(HTNode[m+1])); //0下标不使用,HT[m]表示根结点

    for (int i = 0; i <= m; i++)
    {
        HT[i].lch = 0;
        HT[i].rch = 0;
        HT[i].parent = 0;
    } 

    //输入前n个元素的weight值
    for (int i = 0; i <= n; i++)
    {
        scanf("%i", &HT[i].weight);
    }

    //合并产生n-1个结点
    for (int i = n+1; i <= m; i++)
    {
        Select(HT, i-1, s1, s2);
        HT[s1].parent = i;
        HT[s2].parent = i;
        HT[i].lch = s1;
        HT[i].rch = s2;
        HT[i].weight = HT[s1].weight + HT[s2].weight;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值