6.8.1 有向无环图
有向无环图:无环的有向图,简称DAG图(Directed Acycline Graph)。

有向无环图常用来描述一个工程或系统的进行过程。通常把计划、施工、生产、程序流程等当成是一个工程。
一个工程可以分为若干个子工程,只要完成了这些子工程(活动),就可以使得整个工程完成。
6.8.2 AOV网
用一个有向图表示一个工程的个子工程及其相互制约的关系,其中以顶点表示活动,弧表示活动之间的优先制约关系,称这种有向图为顶点表活动的网,简称AOV网(Activity on Vextex network)。
AOV网的特点:
- 若从 i 到 j 有一条有向路径,则 i 是 j 的前驱,j 是 i 的后继;
- 若<i,j>是网中有向边,则 i 是 j 的直接前驱,j 是 i 的直接后继;
- AOV网中不允许有回路,因为如果回路存在,则表明某项活动以自己为先决条件,显然是不成立的。
6.8.3 拓扑排序
在AOV网没有回路的前提下,我们将全部活动排列成一个线性序列,使得若AOV网中有弧<i,j>存在,则在这个序列中,i 一定排在 j 的前面,具有这种性质的线性序列称为拓扑有序序列,相应的拓扑有序排序的算法称为拓扑排序。
拓扑排序案例:
| 课程代号 | 课程名称 | 先修课 |
| C1 | 程序设计基础 | 无 |
| C2 | 离散数学 | C1 |
| C3 | 数据结构 | C1,C2 |
| C4 | 汇编语言 | C1 |
| C5 | 语言的设计与分析 | C3,C4 |
| C6 | 计算机原理 | C11 |
| C7 | 编译原理 | C3,C5 |
| C8 | 操作系统 | C3,C6 |
| C9 | 高等数学 | 无 |
| C10 | 线性代数 | C9 |
| C11 | 大学物理 | C9 |
| C12 | 数值分析 | C1,C9,C10 |

拓扑排序的方法:
(1)在有向图中选取一个没有前驱的顶点输出;
(2)在图中删除该顶点和所有以它为尾的弧;
(3)重复上述两步,直至全部顶点均已输出,或者当图中不存在无前驱的顶点为止。
上图的拓扑序列:C1,C2,C3,C4,C5,C7,C9,C10,C11,C6,C12,C8
一个AOV网的拓扑序列不是唯一的。
如何检测AOV网是否存在环?
对有向图构造其顶点的拓扑有序序列,若网中所有顶点都在它的拓扑有序序列中,则该AOV网必定不存在环。
8222

被折叠的 条评论
为什么被折叠?



