2022-1-26第三章机器学习基础--逻辑回归、聚类

模型的保存与加载

训练好的数据集如何保存
API:
在这里插入图片描述
在这里插入图片描述

逻辑回归–分类算法(回归转分类)–只适用解决二分类问题

输入:线性回归公式
特点:
不仅能分类,还能得出概率值
在这里插入图片描述
核心部分:
sigmoid函数—将值映射为0-1之间的值(概率)
在这里插入图片描述在这里插入图片描述
如何定义损失函数:
在这里插入图片描述
(信息熵也是log(概率值))
①预测概率值为1时:
在这里插入图片描述
②预测概率值为0时:
在这里插入图片描述
所有损失值加在一起就是总损失函数,通过总损失衡量整体结果
在这里插入图片描述
优化:梯度下降更新线性回归输入的权重(对数似然损失存在多个局部最小值,目前无法解决),均方误差只有一个最小值
在这里插入图片描述
解决方法:(虽然没有全局最低点,但是效果都还是不错的)
1.多次随机初始化,多次比较最小值的结果
2.调整学习率(自适应学习率Adam)
API:
在这里插入图片描述
在这里插入图片描述
案例:
在这里插入图片描述
特点:
①只能解决二分类问题
②适合需要得到分类概率得场景,简单,速度快
③不好处理多分类问题
方法推演:softmax—多分类问题
在这里插入图片描述

K-mean(聚类)原理及案例–非监督学习算法

K—把数据划分成多少个类别(不知道类别个数的话就是超参数,知道类别数就是已知参数)
在这里插入图片描述
步骤:
①随机在数据中抽取k个样本,当作k个类别的中心点
②计算剩余的点分别到这K个中心点的距离(每一个样本都有k个距离),从中选出距离最近的点,作为自己的标记
③分别计算这K个族群的平均值,把K个平均值与之前的K个中心点比较,如果相同:结束聚类;如果不相同:把这三个平均值当中新的中心点,重复第二步
API:
在这里插入图片描述
在这里插入图片描述
(聚类一般用在分类之前)

聚类的评估标准:轮廓系数
在这里插入图片描述
外部距离最大化、内部距离最小化
在这里插入图片描述
在这里插入图片描述在这里插入图片描述

[-1,1]—超过0,就说明聚类效果较好

API:
在这里插入图片描述在这里插入图片描述
在这里插入图片描述
特点:
迭代式算法,直观易懂
缺点:
容易收敛到局部最优解(多次聚类)
需要预先设定簇的数量(k-means++解决)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值