机器学习
henu-于笨笨
大一下学期,因坚守内心而处于挂科边缘的边缘人
展开
-
Pytorch 安装CV2
使用清华的镜像来下载CV2十分的迅速首先切换到pytorchconda activate pytorch然后下载安装pip install -i https://pypi.tuna.tsinghua.edu.cn/simple opencv-python安装成功原创 2022-05-14 15:08:39 · 6350 阅读 · 3 评论 -
pytorch部署到jupyter中
pytorch部署到jupyter中在安装Aconda的同时,会将jupyter notebook一起安装,不过这里的jupyter notebook是base中的jupyter notebook二不是pytorch中的jupyter notebook,因此并不能在此jupyter notebook运行torch包。base中的jupyter:两种解决方案一、base中重新安装pytorch二、pytorch中安装jupyter notebook这里选择第二种方法首先conda acti原创 2022-05-04 17:46:16 · 3593 阅读 · 6 评论 -
pytorch超级详细的安装教程
pytorch超级详细的安装教程第一次安装的时候安装了差不多有一整天,还安装失败了。这次安装的速度很快。首先是Anaconda的下载,我用的是上学期学python的时候老师之前给的安装包,很快就安装好了,或者去官网去下载Anaconda也挺快,链接如下:Anaconda官网其次是Anaconda安装,整个下载过程都是一路next,我只是把下载的路径改变了一下。默认路径是C盘,我调整到了其他盘。安装完整后,在看是菜单处看到新添加的东西打开这个Anaconda Prompt应用进入之后是以(bas原创 2022-05-04 16:13:36 · 101167 阅读 · 52 评论 -
Python机器学习实验二:2.编写代码,实现对iris数据集的KNN算法分类及预测并改进
Python机器学习实验二:2.编写代码,实现对iris数据集的KNN算法分类及预测并改进2、改进模型,要求:(1)数据集划分采用10折交叉验证;(2)寻找最优的n_neighbors值(在5-10之间);(3)使用新的模型预测未知种类的鸢尾花。待预测未知数据:X1=[[1.5 , 3 , 5.8 , 2.2], [6.2 , 2.9 , 4.3 , 1.3]]点个👍吧#引入十折交叉验证算法import numpy as npfrom sklearn.model_selection im原创 2022-03-21 15:33:54 · 2389 阅读 · 0 评论 -
Python机器学习实验二:1.编写代码,实现对iris数据集的KNN算法分类及预测
Python机器学习实验二:编写代码,实现对iris数据集的KNN算法分类及预测1、编写代码,实现对iris数据集的KNN算法分类及预测,要求:(1)数据集划分为测试集占20%;(2)n_neighbors=5;(3)评价模型的准确率;(4)使用模型预测未知种类的鸢尾花。import numpy as npfrom sklearn.model_selection import train_test_splitfrom sklearn.datasets import load_irisfro原创 2022-03-21 15:31:48 · 4635 阅读 · 0 评论 -
python机器学习 实验一 使用最小二乘法进行贷款额度预测
python机器学习 实验一 使用最小二乘法进行贷款额度预测求解:当工资18000、年龄30时,额度是多少?给出代码与运行结果图代码:from mpl_toolkits.mplot3d import Axes3Dfrom pylab import mplimport matplotlib.pyplot as plt#多元函数是空间问题不再是平面问题,因此要用到三维画图#导入数据源x1 = [4000, 8000, 5000, 7500, 12000]x2 = [25, 30, 28,原创 2022-03-14 15:43:26 · 2166 阅读 · 0 评论 -
python机器学习 实验一 使用最小二乘法进行房价预测
python机器学习 实验一 使用最小二乘法进行房价预测数据求解:当房屋面积为55平方时,租赁价格是多少?给出代码与运行结果图主要是用数学推导出最小二乘法的公式,然后求出来所需要的各个参数,预测出来最终结果,有点像数学建模不要抄袭代码import matplotlib.pyplot as pltfrom pylab import mpl#导入数据源x = [10, 15, 20, 30, 50, 60, 60, 70]y = [0.8, 1, 1.8, 2, 3.2, 3, 3.1,原创 2022-03-14 15:29:52 · 3794 阅读 · 0 评论 -
课本上线性回归算法
课本上线性回归算法#coding=utf-8import numpy as npfrom scipy import statsimport matplotlib.pyplot as plt#构造训练数据x = np.arange(0.,10.,0.2)m = len(x)x0 = np.full(m,1.0)input_data = np.vstack([x0,x]).T#将偏置b作为权向量的一个分量target_data = 2 * x + 5 + np.random.randn(m)原创 2022-03-13 20:54:21 · 2286 阅读 · 0 评论 -
机器学习 绪论
机器学习 绪论重点:一·、机器学习的定义:计算机程序通过利用经验E再人物T上获得了性能P的改善,则称为该程序对E进行了学习。二、特征向量的概念1.训练集:所有训练的样本的集合(特殊)2.测试集:所有测试样本的集合(一般)3.预测值为离散值的问题:分类4.预测值为连续值的问题:回归7.监督学习的定义:训练数据有标记信息的学习任务,即数据有标签这个部分大体包括:回归,分类,降维,结构化预测,异常检测回归:1.线性回归2.一维线性回归:一个属性惊醒描述3.多元线性回归:数据集D,样本由原创 2021-10-25 16:41:11 · 288 阅读 · 0 评论
分享