题意:
设有 N×N 的方格图,我们在其中的某些方格中填入正整数,而其它的方格中则放入数字0。如下图所示:
某人从图中的左上角 A 出发,可以向下行走,也可以向右行走,直到到达右下角的 B 点。
在走过的路上,他可以取走方格中的数(取走后的方格中将变为数字0)。
此人从 A 点到 B 点共走了两次,试找出两条这样的路径,使得取得的数字和为最大。
输入格式
第一行为一个整数N,表示 N×N 的方格图。
接下来的每行有三个整数,第一个为行号数,第二个为列号数,第三个为在该行、该列上所放的数。
行和列编号从 1 开始。
一行“0 0 0”表示结束。
输出格式
输出一个整数,表示两条路径上取得的最大的和。
数据范围
N < = 10
输入样例:
8
2 3 13
2 6 6
3 5 7
4 4 14
5 2 21
5 6 4
6 3 15
7 2 14
0 0 0
输出样例:
67
分析:
既然走了两次而且两次的总步数是一样的,那么可以两个一起走,然后对于当前时刻,两条路有3种走法,下下,下右,右右,然后如果这一步他们到达的位置不同,就加上两个位置上的数,如果走到一个格子了,就只需要算一次就好了.
那么我们用dp[k][i1][i2]表示第k步一个走到(i1, k - i1),一个走到(i2 , k - i2)的最大值,那么分别能够从三个方向转移过来,取三次MAX就可以了.
int dp[2 * MAXN][MAXN][MAXN];
int mp[MAXN][MAXN];
//dp[k][i1][i2]表示走到(i1,k-i1),(i2,k-i2)的MAX
int n;
int main(){
scanf("%d",&n);
memset(mp,0,sizeof(mp));
int a,b,c;
while(~scanf("%d%d%d",&a,&b,&c) && (a || b || c)){
mp[a][b] = c;
}
for(int k=2;k<=2*n;k++){
for(int i1 = 1;i1 <= n;i1 ++){
for(int i2 = 1;i2 <= n;i2 ++){
int j1 = k - i1,j2 = k - i2;
if(j1 <= n && j2 <= n && j1 >= 1 && j2 >= 1){
int w = mp[i1][j1];
if(i1 != i2)w += mp[i2][j2];
dp[k][i1][i2] = max(dp[k][i1][i2],dp[k-1][i1-1][i2-1] + w); //下下
dp[k][i1][i2] = max(dp[k][i1][i2],dp[k-1][i1-1][i2] + w); //下右
dp[k][i1][i2] = max(dp[k][i1][i2],dp[k-1][i1][i2-1] + w); //右下
dp[k][i1][i2] = max(dp[k][i1][i2],dp[k-1][i1][i2] + w); //右右
}
}
}
}
printf("%d\n",dp[2*n][n][n]);
return 0;
}
本文介绍了一种通过动态规划解决二维网格中寻找两条路径以获取最大数字和的问题的方法。利用dp数组存储中间结果,考虑每次移动的方向组合,最终输出两遍路径能获得的最大数字和。
905

被折叠的 条评论
为什么被折叠?



