from Perceptron import Perceptron
import matplotlib.pyplot as plt
f = lambda x: x
class LinearUnit(Perceptron):
def __init__(self, input_num):
'''初始化线性单元,设置输入参数的个数'''
Perceptron.__init__(self, input_num, f)
def get_training_dataset():
'''
捏造5个人的收入数据
'''
input_vecs = [[5], [3], [8], [1.4], [10.1]]
labels = [5500, 2300, 7600, 1800, 11400]
return input_vecs, labels
def train_linear_unit():
'''
使用数据训练线性单元
'''
lu = LinearUnit(1)
input_vecs, labels = get_training_dataset()
lu.train(input_vecs, labels, 10, 0.01)
return lu
def plot(linear_unit):
input_vecs, labels = get_training_dataset()
fig = plt.figure()
ax = fig.add_subplot(111)
vectors=list(map(lambda x: x[0], input_vecs))
print('输入的变量是:',input_vecs)
print('map后的结果是',vectors)
ax.scatter(vectors, labels)
weights = linear_unit.weights
bias = linear_unit.bias
x = range(0, 12, 1)
y = list(map(lambda x: weights[0] * x + bias, x))
ax.plot(x, y)
plt.show()
if __name__ == '__main__':
'''训练线性单元'''
linear_unit = train_linear_unit()
print("-----000----------")
print(linear_unit)
print("-----------------111-----")
print('Work 3.4 years, monthly salary = %.2f' % linear_unit.predict([3.4]))
print('Work 15 years, monthly salary = %.2f' % linear_unit.predict([15]))
print('Work 1.5 years, monthly salary = %.2f' % linear_unit.predict([1.5]))
print('Work 6.3 years, monthly salary = %.2f' % linear_unit.predict([6.3]))
plot(linear_unit)