榛子威化
码龄5年
关注
提问 私信
  • 博客:26,843
    26,843
    总访问量
  • 8
    原创
  • 684,991
    排名
  • 479
    粉丝

个人简介:如无必要,勿增实体 Entities should not be multiplied unnecessarily

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:广东省
  • 加入CSDN时间: 2019-08-24
博客简介:

weixin_45563167的博客

查看详细资料
个人成就
  • 获得27次点赞
  • 内容获得6次评论
  • 获得164次收藏
创作历程
  • 8篇
    2023年
成就勋章
兴趣领域 设置
  • Python
    python
  • 数据结构与算法
    算法
  • 人工智能
    opencv图像处理数据分析文心一言
  • 测试
    selenium
  • 软件工程
    jira
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

5Gbps的固态为什么拷贝速度只有150m/s?

寻址时间受到硬盘的“4k读写速度”(又叫随机读写速度)的影响,而5Gbps那个叫做连续读写速度,也就是一个文件传输的速度,换算下来就是“文件大小/发送时间”。但这是理论最大速度,实际上不可能跑满,一般来说固态硬盘,跑到400m/s算性能优良了,300m/s也属于正常水平。4k读写速度越快,寻址时间越短,固态硬盘比机械硬盘要快,不仅仅是由于4k读写快,连续读写也更快。固态的连续读写是机械的几十倍,而4k读写高达几百倍。那么理论的传输速度就在768m/s,实际上在拷贝时,发现只有200m/s以下的传输速度。
原创
发布博客 2023.08.03 ·
10052 阅读 ·
4 点赞 ·
0 评论 ·
4 收藏

面向BEV感知的4D标注方案

4D标注主要在3D空间+时序(动态物体)维度上进行标注;以BEV为代表的感知任务输出空间从2D透视图像空间转换到3D空间,相应地从空间也转换到3D空间。相关感知任务分为静态感知(路面要素、灯牌锥),动态感知(Detection、Tracking、Prediction、属性),通用障碍物感知(Occupancy/Occupancy Flow)Clip是一段固定时间长度(15s)或者空间距离长度(300m)的视频片段,包括多有传感器的数据Site是空间中的物理坐标点,由位于同一位置的多个clips构成。
原创
发布博客 2023.07.21 ·
2087 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

三维点云处理(三)——Kenerl PCA

上一章节说明的基础PCA主成分分析的基本原理,这种PCA主要适用于线性关系的数据点,在原理里包含的矩阵乘法实际上也是线性操作。数据中矩阵乘一个向量就是对矩阵的列的线性组合。如果我们遇到数据不是线性的情况下怎么办呢?将所有的数据点投影到主向量上去,由此得到投影后的系数yr。从PCA引入到kernel PCA,主要是通过使用核函数来对数据进行升维来达成聚类效果。
原创
发布博客 2023.06.07 ·
887 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

如何学好一门IT技术(以python进行深度学习为例)

无论是初学者还是有经验的专业人士,在学习一门新的IT技术时,都需要采取一种系统性的学习方法。那么作为一名技术er,你是如何系统的学习it技术的呢。
原创
发布博客 2023.06.05 ·
164 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

三维点云处理(二)——PCA

上一回我们介绍了点云的基本概念,然后介绍了不同感知源头获取到数据的各种特征,之后是处理点云数据的一些主流方法,今天开始正式进入传统数学方法的研究下面正式开始介绍提示:今天学习的PCA,是除了深度学习之外,另一种做图像信息识别的传统方法,在理论推演过程中涉及到线性代数和对称矩阵变换等数学方法,需要我们对谱定理,瑞利熵定理和奇异值分解知识有一定基础,还需要了解数据点在不同维度聚类的情况,降维在不同向量上的特征表现。CSND知乎文章B站视频。
原创
发布博客 2023.06.05 ·
2078 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

三维点云处理(一)——Introduction

当下的点云处理包含传统方法和前沿方法(深度学习)workSimple传统方法是可控且精准的,我们可以用数学去精准描述这些方法如何实现,有什么可预期的输出。而深度学习就像一个黑盒子,我们不知道他是如何工作的,甚至也无法控制它去怎么工作,好处就是他非常简单,人人可用。比如说做物体检测,深度学习绝对是完爆传统学习的方法, 而且你可能只需要写少于100行的代码就能实现一个非常好的物体检测网络。传统方法的话针对不同的问题就会有不同的步骤、不同的算法。
原创
发布博客 2023.05.29 ·
696 阅读 ·
2 点赞 ·
2 评论 ·
4 收藏

AutoSAR软件架构基础(一)

随着汽车ECU控制器的逐步发展,汽车电子领域需求也日益复杂,在这一环境之下,整车厂和 零部件制造商均不得不考虑软件重复性,可裁剪性,质量保证等等问题,AutoSAR便是基于这些种种要求,由几大零部件提供商和主机厂联合提出的要求。统一解决方案针对问题。挑战:E/E系统复杂度快速增加目标:重复使用、不断测试功能代码爆炸式增长提高软件质量,降低开发成本硬件平台种类增多重复使用功能层软件开发流程和文件格式未统一重复使用基础层软件。
原创
发布博客 2023.05.26 ·
7317 阅读 ·
10 点赞 ·
2 评论 ·
122 收藏

算法设计思想——动态规划

虽然这道题的实质是斐波那契数列,但理解到动态规划的程序设计思路其实没那么轻松,关键是能够迅速捕捉到这以概念,进行建模,按照动态规划五部曲的递推公式,逐步推导得到结果。O%28n%29。
原创
发布博客 2023.05.24 ·
3458 阅读 ·
9 点赞 ·
2 评论 ·
21 收藏