【1】CPU飙升到200%以上问题汇总
CPU飙升到200%以上是生成中常见的问题
注意:
linux的cpu使用频率是根据cpu个数和核数决定的
top,然后你按一下键盘的1,这就是单个核心的负载,不然是所有核心的负载相加,自然会超过100
所有cpu使用率总和:
top

top # 进入交互界面
# 接下来按1,查看每个cpu占用

我的云服务器是2核的,因此显示的是有2个cpu
# 查询结果按照cpu使用率排
shift+P
# 按照内存占用率排序
shift+M
1 MySQL进程飙升到900%
我们日常在使用MySQL的过程中,或多或少都遇到过CPU突然过高,或者达到200%以上的情况。
- 数据库执行查询或数据修改操作时,系统需要消耗大量的CPU资源维护从存储系统、内存数据中的一致性。
- 并发量大并且大量SQL性能低的情况下,比如字段是没有建立索引,则会导致快速CPU飙升,如果还开启了慢日志记录,会导致性能更加恶化。生产上有MYSQL 飙升900% 的恶劣情况。
1.1 定位过程
- 使用top命令查看是否是mysqld导致还是其他原因
- 如果是mysqld导致,
show processlist,查看session情况,确定是否有消耗资源的sql在运行 - 找到消耗高的sql,查看执行计划是否准确,index是否缺失,或者是数据量太大导致。
1.2 处理过程
- kill掉这些线程(观察cpu使用率是否下降,通常都会下降)
- 进行
加索引、改SQL、改内存参数
index是否缺失,如果是,则建立索引,也有可能是每个SQL消耗资源并不多,但是突然有大量的session连进导致cpu飙升,这种情况就需要跟应用一起来分析为何连接数会激增,再做出相应的调整,如:限制连接数等。
# mysql查看索引
show index from 表名;

3. 优化的过程,往往不是一步完成的,而是一步一步,执行一项优化措施,再观察,再优化。
1.3 真实案例
之前开发同事编写的SQL语句,就导致过线上CPU过高,MySQL的CPU使用率达到900%+,通过优化最后降低到70%~80%。下面说说个人在这个过程中的排查思路。
首先,我们要对问题定位而不是盲目的开启什么 慢日志,在并发量大并且大量SQL性能低的情况下,开启慢日志无意是将MySQL推向崩溃的边缘。
当时遇到这个情况,分析了当前的数据量、索引情况、缓存使用情况。目测数据量不大,也就几百万条而已。接下来就去定位索引、缓存问题。
- 经过询问,发现很多查询都是走MySQL,没有用到缓存。
- 既然没有用到缓存,则是大量请求全部查询MySQL导致。通过下面的命令查看:
show processlist;
发现类似很多相同的SQL语句,一直处于query状态中。
select id form user where user_code = 'xxxxx';
初步分析可能是 user_code 字段没有索引导致。接着查询user表的索引情况:
show index form user;
发现这个字段是没有建立索引。增加索引之后,该条SQL查询能够正常执行。
3、没隔一会,又发生大量的请求超时问题。接着进行分析,发现是开启了 慢日志查询。大量的SQL查询语句超过慢日志设置的阀值,于是将慢日志关闭之后,速度瞬间提升。CPU的使用率基本保持在300%左右。但还不是理想状态。
# 查看是否开启慢日志
show variables like "%slow_query_log%";

拓展:
- 慢查询日志,主要用来记录在 MySQL 中执行时间超过指定时间的 SQL 语句。通过慢查询日志,可以查找出哪些语句的执行效率低,以便进行优化。
- 慢查询日志,不能随意开启。对于需要大量IO的mysql操作,开启慢查询日志对mysql性能的影响可能远高于理论值,在亿级数据insert场景中,开启慢查询日志后insert数据慢了三倍以上。
4、紧接着将部分实时查询数据的SQL语句,都通过缓存(redis)读写实现。观察一段时间后,基本维持在了70%~80%。
总结:其实本次事故的解决很简单,就是添加索引与缓存结合使用。
- 不推荐在这种CPU使用过高的情况下进行慢日志的开启。因为大量的请求,如果真是慢日志问题会发生日志磁盘写入,性能贼低。
直接通过MySQL show processlist命令查看,基本能清晰的定位出部分查询问题严重的SQL语句,在针对该SQL语句进行分析。一般可能就是索引、锁、查询大量字段、大表等问题导致。- 再则一定要使用缓存系统,降低对MySQL的查询频次。
对于内存调优,也是一种解决方案。
2 Java进程飙升到900%
一般来说Java 进程不做大量 CPU 运算,正常情况下,CPU 应该在 100~200% 之间,
但是,一旦高并发场景,要么走到了死循环,要么就是在做大量的 GC, 容易出现这种 CPU 飙升的情况,CPU飙升900%,是完全有可能的。
2.1 定位过程
CPU飙升问题定位的一般步骤是:
- top指令查看当前占用CPU较高的进程PID;
top
- 查看当前进程消耗资源的线程ID(tid):top -Hp PID
top -Hp PID
- 通过print命令将线程PID转为16进制,根据该16进制值去打印的堆栈日志内查询,查看该线程所驻留的方法位置。
printf "%x\n" tid(线程id)
- 通过jstack命令,查看栈信息,定位到线程对应的具体代码。

# pid:java进程id nid线程id的十六进制
jstack <pid> |grep -A 200 <nid>

- 分析代码解决问题。
2.2 处理过程:
- 如果是空循环,或者空自旋。
处理方式:可以使用Thread.sleep或者加锁,让线程适当的阻塞。
- 在循环的代码逻辑中,创建大量的新对象导致频繁GC。比如,从mysql查出了大量的数据,比如100W以上等等。
处理方式:可以减少对象的创建数量,或者,可以考虑使用 对象池。
- 其他的一些造成CPU飙升的场景,比如 selector空轮训导致CPU飙升 。
处理方式:参考Netty源码,无效的事件查询到了一定的次数,进行 selector 重建。
2.3 真实案例
最近负责的一个项目上线,运行一段时间后发现对应的进程竟然占用了700%的CPU,导致公司的物理服务器都不堪重负,频繁宕机。
- 那么,针对这类java进程CPU飙升的问题,我们一般要怎么去定位解决呢?
①top命令定位对应进程(号)
登录服务器,执行top命令,查看CPU占用情况,找到进程的pid
top

很容易发现,PID为29706的java进程的CPU飙升到700%多,且一直降不下来,很显然出现了问题。
②top -Hp定位线程(号)
使用top -Hp <pid>命令(为Java进程的id号)查看该Java进程内所有线程的资源占用情况(按shft+p按照cpu占用进行排序,按shift+m按照内存占用进行排序)
此处按照cpu排序:
top -Hp 29706

很容易发现,多个线程的CPU占用达到了90%多。我们挑选线程号为30309的线程继续分析。
③jstack定位问题代码
1. 线程号转换为16进制
# printf “%x\n” 命令(tid指线程的id号)将以上10进制的线程号转换为16进制:
printf "%x\n" 30309

转换后的结果分别为7665,由于导出的线程快照中线程的nid是16进制的,而16进制以0x开头,所以对应的16进制的线程号nid为0x7665
2. 导出线程快照
- 通过使用dk自带命令jstack获取该java进程的线程快照并输入到文件中
# jstack -l java进程ID > ./jstack_result.txt
jstack -l 29706 > ./jstack_result.txt
3. 根据线程号定位具体代码
在jstack_result.txt 文件中根据线程好nid搜索对应的线程描述
# 7765为转换为16进制后的线程id
cat jstack_result.txt |grep -A 100 7665

根据搜索结果,判断应该是ImageConverter.run()方法中的代码出现问题
当然,这里也可以直接采用
jstack <pid> |grep -A 200 <nid>
来定位代码,例如(并非本文例子):
$jstack 44529 |grep -A 200 ae24
“System Clock” #28 daemon prio=5 os_prio=0 tid=0x00007efc19e8e800 nid=0xae24 waiting on condition [0x00007efbe0d91000]
java.lang.Thread.State: TIMED_WAITING (sleeping)
at java.lang.Thread.sleep(Native Method)
at java.lang.Thread.sleep(Thread.java:340)
at java.util.concurrentC.TimeUnit.sleep(TimeUnit.java:386)
at com.*.order.Controller.OrderController.detail(OrderController.java:37) //业务代码阻塞点
④分析代码解决问题
下面是ImageConverter.run()方法中的部分核心代码。
逻辑说明:
/存储minicap的socket连接返回的数据 (改用消息队列存储读到的流数据) ,设置阻塞队列长度,防止出现内存溢出
//全局变量
private BlockingQueue<byte[]> dataQueue = new LinkedBlockingQueue<byte[]>(100000);
//消费线程
@Override
public void run() {
//long start = System.currentTimeMillis();
while (isRunning) {
//分析这里从LinkedBlockingQueue
if (dataQueue.isEmpty()) {
continue;
}
byte[] buffer = device.getMinicap().dataQueue.poll();
int len = buffer.length;
}
- 在while循环中,不断读取堵塞队列dataQueue中的数据,如果数据为空,则执行continue进行下一次循环。
- 如果不为空,则通过poll()方法读取数据,做相关逻辑处理。
- 初看这段代码好像没什么问题,但是如果dataQueue对象长期为空的话,这里就会一直空循环,导致CPU飙升。
那么如何解决呢?
分析LinkedBlockingQueue阻塞队列的API发现:
//取出队列中的头部元素,如果队列为空则调用此方法的线程被阻塞等待,直到有元素能被取出,如果等待过程被中断则抛出InterruptedException
E take() throws InterruptedException;
//取出队列中的头部元素,如果队列为空返回null
E poll();
这两种取值的API,显然take方法更时候这里的场景。
代码修改为:
while (isRunning) {
/* if (device.getMinicap().dataQueue.isEmpty()) {
continue;
}*/
byte[] buffer = new byte[0];
try {
buffer = device.getMinicap().dataQueue.take();
} catch (InterruptedException e) {
e.printStackTrace();
}
……
}
重启项目后,测试发现项目运行稳定,对应项目进程的CPU消耗占比不到10%。

3 其他中间件、容器导致
如:Redis、Nginx等
参考:https://www.cnblogs.com/crazymakercircle/p/17079410.html
文章详细阐述了CPU使用率飙升至200%以上时,如何针对MySQL和Java进程进行问题定位和处理。在MySQL中,问题可能源于无索引的SQL查询、大量并发请求或慢查询日志;而在Java进程中,CPU飙升可能由于死循环、大量GC或对象创建。解决方案包括添加索引、使用缓存、优化代码和调整GC策略。
3807

被折叠的 条评论
为什么被折叠?



