[AI]Mac本地部署Deepseek R1模型 — — 保姆级教程

[AI]Mac本地部署DeepSeek R1模型 — — 保姆级教程

DeepSeek R1是中国AI初创公司深度求索(DeepSeek)推出大模型DeepSeek-R1。 作为一款开源模型,R1在数学、代码、自然语言推理等任务上的性能能够比肩OpenAI o1模型正式版,并采用MIT许可协议,支持免费商用、任意修改和衍生开发等。 截至2月5日,国内外已有众多云平台宣布上线DeepSeek- R1大模型。

  • DeepSeek官方地址:https://www.deepseek.com/
    在这里插入图片描述
  • 但因目前遭到国外不明人员攻击以及访问量激增的原因,导致官方聊天不稳定,本文将介绍如何本地安装部署Deepseek R1模型,解决网络不稳定的窘境

安装ollama

  1. 访问官网选择mac os进行下载,官网地址:https://ollama.com/
    在这里插入图片描述

  2. 下载下来的文件为:Ollama-darwin.zip

  3. 点击解压,并移动到application
    在这里插入图片描述

  4. 点击next,点击Install安装ollama

安装Deepseek模型

  1. 根据页面提示在终端执行命令,运行ollama即可(但因为我们需要部署deepseek,所以后面修改下模型版本即可)
    [图片]

  2. 来到ollama官网,点击models,选择对应版本
    [图片]

  3. 点击之后,复制对应命令,在终端执行即可
    在这里插入图片描述
    在这里插入图片描述

  4. 等待模型下载完成后,就可以直接在终端进行对话
    在这里插入图片描述

安装可视化聊天页面chatbox

  1. 通过终端命令行操作肯定是不太方便的,所以接下来我们将通过chatbox搭建web可视化页面,方便我们与其对话
  • 打开官方地址:https://chatboxai.app/en,点击download
    在这里插入图片描述
  • 根据自己mac搭载的芯片,选择对应版本进行下载
    在这里插入图片描述
  1. 下载完后是.dmg文件,直接双击无脑安装即可
    在这里插入图片描述
  2. 然后在应用程序中找到我们安装的chatbox,双击启动,并选择使用自己的本地模型
    在这里插入图片描述
    在这里插入图片描述
  3. 选择模型提供方ollama,并配置本地模型参数
    在这里插入图片描述

查看效果

来到聊天框,输入问题,查看AI回答:
在这里插入图片描述

拓展:ollama常用命令

# 启动ollama服务
ollama serve

# 创建模型:使用 Modelfile 来创建一个新模型。你需要提供一个包含模型信息的 Modelfile
ollama create /path/to/Modelfile

# 显示模型信息
ollama show model_name

# 列出本地所有模型
ollama list
ollama ls

# 运行模型
ollama run model_name

# 列出正在运行的模型
ollama ps

# 停止模型
ollama stop model_name

# 删除一个已安装的模型
ollama rm model_name

# 查看版本信息
ollama -v

# 复制模型
ollama cp old_model new_model

# 拉取远端模型
ollama pull model_name

# 将本地模型推送到模型注册表中,以便他人或其他系统使用
ollama push model_name

# 使用 ollama run 命令启动模型并进入交互模式,在交互模式下,输入 /bye 或按下 Ctrl+d 退出
ollama run deepseek-r1:1.5b

# 单次命令交互
echo "你是谁?" | ollama run deepseek-r1:1.5b
<think>好的,用户想在本地部署DeepSeek R1大模型,我需要根据提供的引用资料来整理步骤。首先,引用1提到了安装Ollama、DeepSeek-R1模型和ChatBox。引用2补充了安装依赖和可能需要的视频教程。 我需要先确定用户的操作系统,但引用里提到的是Win11。步骤可能包括安装Ollama,下载模型,安装ChatBox并配置。可能还需要安装依赖项,比如Python环境或其他库。要注意是否需要管理员权限或者环境变量的设置。 用户可能遇到的问题包括安装过程中的依赖缺失,如何正确配置ChatBox连接本地模型,以及模型文件的存放路径是否正确。需要详细说明每个步骤,确保用户能逐步跟随。同时,要提醒用户参考提供的引用和视频教程,尤其是遇到问题时如何查找帮助,比如B站的视频演示。 另外,生成的相关问题需要围绕部署的常见问题、模型应用场景和性能优化,这些都是用户可能进一步想了解的内容。确保回答结构清晰,分步骤说明,避免使用专业术语过多,保持口语化但准确。</think>### 本地部署 DeepSeek-R1 大模型的步骤 #### 1. 安装 Ollama 框架 Ollama 是运行大模型的基础框架,需先完成以下操作: - 访问 [Ollama 官网](https://ollama.ai/) 下载 Windows 版安装包 - 双击安装包按向导完成安装,需确保安装路径无中文和空格[^1] #### 2. 安装模型文件 ```bash ollama run deepseek-r1 ``` 此命令会自动下载约 7GB 的模型文件(具体大小取决于模型版本),下载完成后模型会自动加载到内存[^1] #### 3. 安装 ChatBox 客户端 - 从 [ChatBox 官网](https://chatboxai.app/) 下载 Windows 客户端 - 安装后打开设置,将 API 地址修改为 `http://localhost:11434` - 在模型选择栏输入 `deepseek-r1` 完成本地连接 #### 4. 验证部署 ```python # 测试代码示例 import ollama response = ollama.generate(model='deepseek-r1', prompt='你好') print(response['response']) ``` 若返回正常响应,说明部署成功[^2]
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值