数据分析-第一章:数据载入及初步观察

复习: 这门课程得主要目的是通过真实的数据,以实战的方式了解数据分析的流程和熟悉数据分析python的基本操作。知道了课程的目的之后,我们接下来我们要正式的开始数据分析的实战教学,完成kaggle上泰坦尼克的任务,实战数据分析全流程。
这里有两份资料:
教材《Python for Data Analysis》和 baidu.com &
google.com(善用搜索引擎)

1 第一章:数据载入及初步观察

1.1 载入数据

数据集下载 https://www.kaggle.com/c/titanic/overview

1.1.1 任务一:导入numpy和pandas

#写入代码

import numpy as np
import pandas as pd

【提示】如果加载失败,学会如何在你的python环境下安装numpy和pandas这两个库

1.1.2 任务二:载入数据

(1) 使用相对路径载入数据
(2) 使用绝对路径载入数据

#写入代码
df = pd.read_csv('train.csv')
df.head(3)

PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
#写入代码C:\Users\帅哥的电脑\Desktop\16期组队学习\动手学数据分析-组队学习版\动手学数据分析-组队学习版\第一单元项目集合
df = pd.read_csv(r'C:\Users\帅哥的电脑\Desktop\16期组队学习\动手学数据分析-组队学习版\动手学数据分析-组队学习版\第一单元项目集合\train.csv')
df.head(3)


PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS

【提示】相对路径载入报错时,尝试使用os.getcwd()查看当前工作目录。
【思考】知道数据加载的方法后,试试pd.read_csv()和pd.read_table()的不同,如果想让他们效果一样,需要怎么做?了解一下’.tsv’和’.csv’的不同,如何加载这两个数据集?
【总结】加载的数据是所有工作的第一步,我们的工作会接触到不同的数据格式(eg:.csv;.tsv;.xlsx),但是加载的方法和思路都是一样的,在以后工作和做项目的过程中,遇到之前没有碰到的问题,要多多查资料吗,使用googel,了解业务逻辑,明白输入和输出是什么。

csv格式

df = pd.read_csv()
df.head()

txt格式

df_txt = pd.read_table('.txt') #可设置sep分隔符参数
df_txt

xls或xlsx格式

#需要安装xlrd包
df_excel = pd.read_excel('data/table.xlsx')
df_excel.head()

1.1.3 任务三:每1000行为一个数据模块,逐块读取

df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  
 0   PassengerId  891 non-null    int64  
 1   Survived     891 non-null    int64  
 2   Pclass       891 non-null    int64  
 3   Name         891 non-null    object 
 4   Sex          891 non-null    object 
 5   Age          714 non-null    float64
 6   SibSp        891 non-null    int64  
 7   Parch        891 non-null    int64  
 8   Ticket       891 non-null    object 
 9   Fare         891 non-null    float64
 10  Cabin        204 non-null    object 
 11  Embarked     889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
#写入代码
chunker = pd.read_csv('train.csv', chunksize=500)


for chunk in chunker:
    print(type(chunk))
    display(chunk)
<class 'pandas.core.frame.DataFrame'>
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
49549603Yousseff, Mr. GeriousmaleNaN00262714.4583NaNC
49649711Eustis, Miss. Elizabeth Musseyfemale54.0103694778.2667D20C
49749803Shellard, Mr. Frederick WilliammaleNaN00C.A. 621215.1000NaNS
49849901Allison, Mrs. Hudson J C (Bessie Waldo Daniels)female25.012113781151.5500C22 C26S
49950003Svensson, Mr. Olofmale24.0003500357.7958NaNS

500 rows × 12 columns

<class 'pandas.core.frame.DataFrame'>
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
50050103Calic, Mr. Petarmale17.0003150868.6625NaNS
50150203Canavan, Miss. Maryfemale21.0003648467.7500NaNQ
50250303O'Sullivan, Miss. Bridget MaryfemaleNaN003309097.6292NaNQ
50350403Laitinen, Miss. Kristina Sofiafemale37.00041359.5875NaNS
50450511Maioni, Miss. Robertafemale16.00011015286.5000B79S
.......................................
88688702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88888903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
88989011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89089103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

391 rows × 12 columns

【思考】什么是逐块读取?为什么要逐块读取呢?

如果数据很大,那么直接使用pandas的read_csv()方法去读取的话内存会吃不消,所以就非常有必要使用chunksize去分块处理。

1.1.4 任务四:将表头改成中文,索引改为乘客ID [对于某些英文资料,我们可以通过翻译来更直观的熟悉我们的数据]

PassengerId => 乘客ID
Survived => 是否幸存
Pclass => 乘客等级(1/2/3等舱位)
Name => 乘客姓名
Sex => 性别
Age => 年龄
SibSp => 堂兄弟/妹个数
Parch => 父母与小孩个数
Ticket => 船票信息
Fare => 票价
Cabin => 客舱
Embarked => 登船港口

#写入代码
df = pd.read_csv('train.csv', names=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口'],index_col='乘客ID',header=0)#
df.head()

是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
乘客ID
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS

【思考】所谓将表头改为中文其中一个思路是:将英文额度表头替换成中文。还有其他的方法吗?

df = pd.read_csv('train.csv')
df.columns=['乘客ID','是否幸存','仓位等级','姓名','性别','年龄','兄弟姐妹个数','父母子女个数','船票信息','票价','客舱','登船港口']
df.set_index('乘客ID',inplace=True)
df.head()
是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
乘客ID
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS

1.2 初步观察

导入数据后,你可能要对数据的整体结构和样例进行概览,比如说,数据大小、有多少列,各列都是什么格式的,是否包含null等

1.2.1 任务一:查看数据的基本信息

#写入代码
df.info()
<class 'pandas.core.frame.DataFrame'>
Int64Index: 891 entries, 1 to 891
Data columns (total 11 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   是否幸存    891 non-null    int64  
 1   仓位等级    891 non-null    int64  
 2   姓名      891 non-null    object 
 3   性别      891 non-null    object 
 4   年龄      714 non-null    float64
 5   兄弟姐妹个数  891 non-null    int64  
 6   父母子女个数  891 non-null    int64  
 7   船票信息    891 non-null    object 
 8   票价      891 non-null    float64
 9   客舱      204 non-null    object 
 10  登船港口    889 non-null    object 
dtypes: float64(2), int64(4), object(5)
memory usage: 123.5+ KB
df.describe()
是否幸存仓位等级年龄兄弟姐妹个数父母子女个数票价
count891.000000891.000000714.000000891.000000891.000000891.000000
mean0.3838382.30864229.6991180.5230080.38159432.204208
std0.4865920.83607114.5264971.1027430.80605749.693429
min0.0000001.0000000.4200000.0000000.0000000.000000
25%0.0000002.00000020.1250000.0000000.0000007.910400
50%0.0000003.00000028.0000000.0000000.00000014.454200
75%1.0000003.00000038.0000001.0000000.00000031.000000
max1.0000003.00000080.0000008.0000006.000000512.329200

【提示】有多个函数可以这样做,你可以做一下总结

1.2.2 任务二:观察表格前10行的数据和后15行的数据

#写入代码

df.head(10)
是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
乘客ID
103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
503Allen, Mr. William Henrymale35.0003734508.0500NaNS
603Moran, Mr. JamesmaleNaN003308778.4583NaNQ
701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
803Palsson, Master. Gosta Leonardmale2.03134990921.0750NaNS
913Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)female27.00234774211.1333NaNS
1012Nasser, Mrs. Nicholas (Adele Achem)female14.01023773630.0708NaNC
#写入代码
df.tail(10)

是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
乘客ID
88203Markun, Mr. Johannmale33.0003492577.8958NaNS
88303Dahlberg, Miss. Gerda Ulrikafemale22.000755210.5167NaNS
88402Banfield, Mr. Frederick Jamesmale28.000C.A./SOTON 3406810.5000NaNS
88503Sutehall, Mr. Henry Jrmale25.000SOTON/OQ 3920767.0500NaNS
88603Rice, Mrs. William (Margaret Norton)female39.00538265229.1250NaNQ
88702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS
89011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

1.2.4 任务三:判断数据是否为空,为空的地方返回True,其余地方返回False

#写入代码
df.isna()
是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
乘客ID
1FalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalse
2FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
3FalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalse
4FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
5FalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalse
....................................
887FalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalse
888FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
889FalseFalseFalseFalseTrueFalseFalseFalseFalseTrueFalse
890FalseFalseFalseFalseFalseFalseFalseFalseFalseFalseFalse
891FalseFalseFalseFalseFalseFalseFalseFalseFalseTrueFalse

891 rows × 11 columns

【总结】上面的操作都是数据分析中对于数据本身的观察

【思考】对于一个数据,还可以从哪些方面来观察?找找答案,这个将对下面的数据分析有很大的帮助

  • 统计一下数据的一些类别特征,具体的来查看每种类别的数据有啥特点,比如这个例子就可以根据是否幸存,或者船舱等等级这些类别特征做下groupby来具体看下每一类里面各个特征分别有什么特点
  • 对于存在NAN的数据,可以单独把这部分数据取出来查看下这部分数据的特点,以便于后序采取方法来对这部分数据进行填补

1.3 保存数据

1.3.1 任务一:将你加载并做出改变的数据,在工作目录下保存为一个新文件train_chinese.csv

#写入代码
df.to_csv('train_chinese.csv')

【总结】数据的加载以及入门,接下来就要接触数据本身的运算,我们将主要掌握numpy和pandas在工作和项目场景的运用。

复习:数据分析的第一步,加载数据我们已经学习完毕了。当数据展现在我们面前的时候,我们所要做的第一步就是认识他,今天我们要学习的就是了解字段含义以及初步观察数据

1 第一章:数据载入及初步观察

1.4 知道你的数据叫什么

我们学习pandas的基础操作,那么上一节通过pandas加载之后的数据,其数据类型是什么呢?

开始前导入numpy和pandas

import numpy as np
import pandas as pd

1.4.1 任务一:pandas中有两个数据类型DateFrame和Series,通过查找简单了解他们。然后自己写一个关于这两个数据类型的小例子🌰[开放题]

#写入代码

'''
#我们举的例子
sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}
example_1 = pd.Series(sdata)
example_1
'''
'''
#我们举的例子
data = {'state': ['Ohio', 'Ohio', 'Ohio', 'Nevada', 'Nevada', 'Nevada'],
        'year': [2000, 2001, 2002, 2001, 2002, 2003],'pop': [1.5, 1.7, 3.6, 2.4, 2.9, 3.2]}
example_2 = pd.DataFrame(data)
example_2
'''


1.4.2 任务二:根据上节课的方法载入"train.csv"文件

#写入代码
df=pd.read_csv('train.csv')
df.head()
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS

也可以加载上一节课保存的"train_chinese.csv"文件。通过翻译版train_chinese.csv熟悉了这个数据集,然后我们对trian.csv来进行操作

1.4.3 任务三:查看DataFrame数据的每列的项

#写入代码
df.columns
Index(['PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age', 'SibSp',
       'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked'],
      dtype='object')

1.4.4任务四:查看"cabin"这列的所有项 [有多种方法]

#写入代码
df.Cabin
0       NaN
1       C85
2       NaN
3      C123
4       NaN
       ... 
886     NaN
887     B42
888     NaN
889    C148
890     NaN
Name: Cabin, Length: 891, dtype: object
#写入代码
df['Cabin']
0       NaN
1       C85
2       NaN
3      C123
4       NaN
       ... 
886     NaN
887     B42
888     NaN
889    C148
890     NaN
Name: Cabin, Length: 891, dtype: object

1.4.5 任务五:加载文件"test_1.csv",然后对比"train.csv",看看有哪些多出的列,然后将多出的列删除

经过我们的观察发现一个测试集test_1.csv有一列是多余的,我们需要将这个多余的列删去

#写入代码
test=pd.read_csv('test_1.csv')
test.head()
Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarkeda
00103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS100
11211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C100
22313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS100
33411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S100
44503Allen, Mr. William Henrymale35.0003734508.0500NaNS100
test.columns
Index(['Unnamed: 0', 'PassengerId', 'Survived', 'Pclass', 'Name', 'Sex', 'Age',
       'SibSp', 'Parch', 'Ticket', 'Fare', 'Cabin', 'Embarked', 'a'],
      dtype='object')
#写入代码
del test['a']
test.head()
Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
00103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
11211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
22313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
33411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
44503Allen, Mr. William Henrymale35.0003734508.0500NaNS

【思考】还有其他的删除多余的列的方式吗?

# 思考回答
test_1 = pd.read_csv('test_1.csv')
test_1.drop(columns='a',inplace=True)
test_1.head()

Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
00103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
11211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
22313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
33411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
44503Allen, Mr. William Henrymale35.0003734508.0500NaNS
test_1 = pd.read_csv('test_1.csv')
test_1.pop('a')
test_1.head()
Unnamed: 0PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
00103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
11211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
22313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
33411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
44503Allen, Mr. William Henrymale35.0003734508.0500NaNS

1.4.6 任务六: 将[‘PassengerId’,‘Name’,‘Age’,‘Ticket’]这几个列元素隐藏,只观察其他几个列元素

#写入代码
df.drop(columns=['PassengerId','Name','Age','Ticket'])
SurvivedPclassSexSibSpParchFareCabinEmbarked
003male107.2500NaNS
111female1071.2833C85C
213female007.9250NaNS
311female1053.1000C123S
403male008.0500NaNS
...........................
88602male0013.0000NaNS
88711female0030.0000B42S
88803female1223.4500NaNS
88911male0030.0000C148C
89003male007.7500NaNQ

891 rows × 8 columns

【思考】对比任务五和任务六,是不是使用了不一样的方法(函数),如果使用一样的函数如何完成上面的不同的要求呢?

【思考回答】

如果想要完全的删除你的数据结构,使用inplace=True,因为使用inplace就将原数据覆盖了,所以这里没有用

1.5 筛选的逻辑

表格数据中,最重要的一个功能就是要具有可筛选的能力,选出我所需要的信息,丢弃无用的信息。

下面我们还是用实战来学习pandas这个功能。

1.5.1 任务一: 我们以"Age"为筛选条件,显示年龄在10岁以下的乘客信息。

#写入代码
df[df.Age<10]
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
7803Palsson, Master. Gosta Leonardmale2.003134990921.0750NaNS
101113Sandstrom, Miss. Marguerite Rutfemale4.0011PP 954916.7000G6S
161703Rice, Master. Eugenemale2.004138265229.1250NaNQ
242503Palsson, Miss. Torborg Danirafemale8.003134990921.0750NaNS
434412Laroche, Miss. Simonne Marie Anne Andreefemale3.0012SC/Paris 212341.5792NaNC
.......................................
82782812Mallet, Master. Andremale1.0002S.C./PARIS 207937.0042NaNC
83183212Richards, Master. George Sibleymale0.83112910618.7500NaNS
85085103Andersson, Master. Sigvard Harald Eliasmale4.004234708231.2750NaNS
85285303Boulos, Miss. Nourelainfemale9.0011267815.2458NaNC
86987013Johnson, Master. Harold Theodormale4.001134774211.1333NaNS

62 rows × 12 columns

1.5.2 任务二: 以"Age"为条件,将年龄在10岁以上和50岁以下的乘客信息显示出来,并将这个数据命名为midage

#写入代码
midage=df[(df.Age>10)&(df.Age<50)]
midage

PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
.......................................
88588603Rice, Mrs. William (Margaret Norton)female39.00538265229.1250NaNQ
88688702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88989011Behr, Mr. Karl Howellmale26.00011136930.0000C148C
89089103Dooley, Mr. Patrickmale32.0003703767.7500NaNQ

576 rows × 12 columns

【提示】了解pandas的条件筛选方式以及如何使用交集和并集操作

1.5.3 任务三:将midage的数据中第100行的"Pclass"和"Sex"的数据显示出来

#写入代码
midage.iloc[[99]].loc[:,["Pclass","Sex"]]
PclassSex
992male

【思考】这个reset_index()函数的作用是什么?如果不用这个函数,下面的任务会出现什么情况?

midage = midage.reset_index(drop=True)
midage.head(3)
PassengerIdSurvivedPclassNameSexAgeSibSpParchTicketFareCabinEmbarked
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
midage.loc[[99],["Pclass","Sex"]]
PclassSex
992male

1.5.4 任务四:将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来

#写入代码
midage.loc[[100-1,105-1,108-1],["Pclass","Name","Sex"]]
PclassNameSex
992Navratil, Mr. Michel ("Louis M Hoffman")male
1043Corn, Mr. Harrymale
1073Bengtsson, Mr. John Viktormale

【提示】使用pandas提出的简单方式,你可以看看loc方法

对比整体的数据位置,你有发现什么问题吗?那么如何解决?

1.5.5 任务五:使用iloc方法将midage的数据中第100,105,108行的"Pclass","Name"和"Sex"的数据显示出来

#写入代码
midage.iloc[[100-1,105-1,108-1]].loc[:,["Pclass","Name","Sex"]]
PclassNameSex
992Navratil, Mr. Michel ("Louis M Hoffman")male
1043Corn, Mr. Harrymale
1073Bengtsson, Mr. John Viktormale

复习:在前面我们已经学习了Pandas基础,知道利用Pandas读取csv数据的增删查改,今天我们要学习的就是探索性数据分析,主要介绍如何利用Pandas进行排序、算术计算以及计算描述函数describe()的使用。

1 第一章:探索性数据分析

开始之前,导入numpy、pandas包和数据

#加载所需的库
import numpy as np
import pandas as pd
#载入之前保存的train_chinese.csv数据,关于泰坦尼克号的任务,我们就使用这个数据
df=pd.read_csv('train_chinese.csv')
df.head()
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS

1.6 了解你的数据吗?

教材《Python for Data Analysis》第五章

1.6.1 任务一:利用Pandas对示例数据进行排序,要求升序

# 具体请看《利用Python进行数据分析》第五章 排序和排名 部分

#自己构建一个都为数字的DataFrame数据

'''
我们举了一个例子
pd.DataFrame() :创建一个DataFrame对象 
np.arange(8).reshape((2, 4)) : 生成一个二维数组(2*4),第一列:0,1,2,3 第二列:4,5,6,7
index=[2,1] :DataFrame 对象的索引列
columns=['d', 'a', 'b', 'c'] :DataFrame 对象的索引行
'''


【代码解析】

pd.DataFrame() :创建一个DataFrame对象

np.arange(8).reshape((2, 4)) : 生成一个二维数组(2*4),第一列:0,1,2,3 第二列:4,5,6,7

index=['2, 1] :DataFrame 对象的索引列

columns=[‘d’, ‘a’, ‘b’, ‘c’] :DataFrame 对象的索引行

【问题】:大多数时候我们都是想根据列的值来排序,所以将你构建的DataFrame中的数据根据某一列,升序排列

#回答代码
frame = pd.DataFrame(np.arange(8).reshape((2, 4)), 
                     index=['2', '1'], 
                     columns=['d', 'a', 'b', 'c'])
frame
dabc
20123
14567

升序

frame.sort_values('d')#ascending
dabc
20123
14567

降序

frame.sort_values('d',ascending=False)
dabc
14567
20123

【思考】通过书本你能说出Pandas对DataFrame数据的其他排序方式吗?

【总结】下面将不同的排序方式做一个总结

1.让行索引升序排序

#代码
frame.sort_index(axis=0)
dabc
14567
20123

2.让列索引升序排序

#代码
frame.sort_index(axis=1)
abcd
21230
15674

3.让列索引降序排序

#代码
frame.sort_index(axis=1,ascending=False)
dcba
20321
14765

4.让任选两列数据同时降序排序

#代码
frame.sort_values(['d','c'],ascending=False)
dabc
14567
20123

1.6.2 任务二:对泰坦尼克号数据(trian.csv)按票价和年龄两列进行综合排序(降序排列),从这个数据中你可以分析出什么?

'''
在开始我们已经导入了train_chinese.csv数据,而且前面我们也学习了导入数据过程,根据上面学习,我们直接对目标列进行排序即可
head(20) : 读取前20条数据
'''
temp=pd.read_csv('train_chinese.csv')
temp.sort_values(['票价'],ascending=False).head(20)
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
25825911Ward, Miss. Annafemale35.000PC 17755512.3292NaNC
73773811Lesurer, Mr. Gustave Jmale35.000PC 17755512.3292B101C
67968011Cardeza, Mr. Thomas Drake Martinezmale36.001PC 17755512.3292B51 B53 B55C
888911Fortune, Miss. Mabel Helenfemale23.03219950263.0000C23 C25 C27S
272801Fortune, Mr. Charles Alexandermale19.03219950263.0000C23 C25 C27S
34134211Fortune, Miss. Alice Elizabethfemale24.03219950263.0000C23 C25 C27S
43843901Fortune, Mr. Markmale64.01419950263.0000C23 C25 C27S
31131211Ryerson, Miss. Emily Boriefemale18.022PC 17608262.3750B57 B59 B63 B66C
74274311Ryerson, Miss. Susan Parker "Suzette"female21.022PC 17608262.3750B57 B59 B63 B66C
11811901Baxter, Mr. Quigg Edmondmale24.001PC 17558247.5208B58 B60C
29930011Baxter, Mrs. James (Helene DeLaudeniere Chaput)female50.001PC 17558247.5208B58 B60C
55755801Robbins, Mr. VictormaleNaN00PC 17757227.5250NaNC
70070111Astor, Mrs. John Jacob (Madeleine Talmadge Force)female18.010PC 17757227.5250C62 C64C
38038111Bidois, Miss. Rosaliefemale42.000PC 17757227.5250NaNC
71671711Endres, Miss. Caroline Louisefemale38.000PC 17757227.5250C45C
52752801Farthing, Mr. JohnmaleNaN00PC 17483221.7792C95S
37737801Widener, Mr. Harry Elkinsmale27.002113503211.5000C82C
73073111Allen, Miss. Elisabeth Waltonfemale29.00024160211.3375B5S
77978011Robert, Mrs. Edward Scott (Elisabeth Walton Mc...female43.00124160211.3375B3S
68969011Madill, Miss. Georgette Alexandrafemale15.00124160211.3375B5S
#代码
temp.sort_values(['票价'],ascending=False).head(20).是否幸存.sum()/20
0.7
temp.sort_values(['票价']).head(20).是否幸存.sum()/20
0.05
temp.sort_values(['票价']).是否幸存.sum()/temp.sort_values(['票价']).是否幸存.count()
0.3838383838383838

我们看到票价前20个乘客的幸存率是0.7.后三十的幸存率就变到了0.05,而总的所有的人的幸存率是0.383

temp.sort_values(['年龄']).head(20)
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
80380413Thomas, Master. Assad Alexandermale0.420126258.5167NaNC
75575612Hamalainen, Master. Viljomale0.671125064914.5000NaNS
64464513Baclini, Miss. Eugeniefemale0.7521266619.2583NaNC
46947013Baclini, Miss. Helene Barbarafemale0.7521266619.2583NaNC
787912Caldwell, Master. Alden Gatesmale0.830224873829.0000NaNS
83183212Richards, Master. George Sibleymale0.83112910618.7500NaNS
30530611Allison, Master. Hudson Trevormale0.9212113781151.5500C22 C26S
82782812Mallet, Master. Andremale1.0002S.C./PARIS 207937.0042NaNC
38138213Nakid, Miss. Maria ("Mary")female1.0002265315.7417NaNC
16416503Panula, Master. Eino Viljamimale1.0041310129539.6875NaNS
18318412Becker, Master. Richard Fmale1.002123013639.0000F4S
38638703Goodwin, Master. Sidney Leonardmale1.0052CA 214446.9000NaNS
17217313Johnson, Miss. Eleanor Ileenfemale1.001134774211.1333NaNS
78878913Dean, Master. Bertram Veremale1.0012C.A. 231520.5750NaNS
64264303Skoog, Miss. Margit Elizabethfemale2.003234708827.9000NaNS
7803Palsson, Master. Gosta Leonardmale2.003134990921.0750NaNS
53053112Quick, Miss. Phyllis Mayfemale2.00112636026.0000NaNS
29729801Allison, Miss. Helen Lorainefemale2.0012113781151.5500C22 C26S
82482503Panula, Master. Urho Abrahammale2.0041310129539.6875NaNS
20520603Strom, Miss. Telma Matildafemale2.000134705410.4625G6S
temp.sort_values(['年龄']).head(20).是否幸存.sum()/20
0.65
temp.sort_values(['年龄']).tail(20).是否幸存.sum()/20
0.15

我们看到年龄从小到大排,前20个乘客的幸存率是0.65.后三十的幸存率就变到了0.15,而总的所有的人的幸存率是0.383

temp.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   乘客ID    891 non-null    int64  
 1   是否幸存    891 non-null    int64  
 2   仓位等级    891 non-null    int64  
 3   姓名      891 non-null    object 
 4   性别      891 non-null    object 
 5   年龄      714 non-null    float64
 6   兄弟姐妹个数  891 non-null    int64  
 7   父母子女个数  891 non-null    int64  
 8   船票信息    891 non-null    object 
 9   票价      891 non-null    float64
 10  客舱      204 non-null    object 
 11  登船港口    889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
temp[temp.性别=='male'].性别.count()
577
temp[temp.性别=='female'].性别.count()
314
temp[temp.性别=='male'].是否幸存.sum()/temp[temp.性别=='male'].是否幸存.count()
0.18890814558058924
temp[temp.性别=='female'].是否幸存.sum()/temp[temp.性别=='female'].是否幸存.count()
0.7420382165605095

很明显的发现男性比女性更容易牺牲,女性幸存率0.74而男性只有0.188

【思考】排序后,如果我们仅仅关注年龄和票价两列。根据常识我知道发现票价越高的应该客舱越好,所以我们会明显看出,票价前20的乘客中存活的有14人,这是相当高的一个比例,那么我们后面是不是可以进一步分析一下票价和存活之间的关系,年龄和存活之间的关系呢?当你开始发现数据之间的关系了,数据分析就开始了。

当然,这只是我的想法,你还可以有更多想法,欢迎写在你的学习笔记中。

多做几个数据的排序

#代码
temp.head()

乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
temp.sort_values(['仓位等级']).head(20).是否幸存.sum()/20
0.8
temp[temp.仓位等级==1].是否幸存.sum()/temp[temp.仓位等级==1].是否幸存.count()
0.6296296296296297
temp[temp.仓位等级==2].是否幸存.sum()/temp[temp.仓位等级==2].是否幸存.count()
0.47282608695652173
temp[temp.仓位等级==3].是否幸存.sum()/temp[temp.仓位等级==3].是否幸存.count()
0.24236252545824846

随着仓位等级下降,存活率下降明显

#写下你的思考
temp.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   乘客ID    891 non-null    int64  
 1   是否幸存    891 non-null    int64  
 2   仓位等级    891 non-null    int64  
 3   姓名      891 non-null    object 
 4   性别      891 non-null    object 
 5   年龄      714 non-null    float64
 6   兄弟姐妹个数  891 non-null    int64  
 7   父母子女个数  891 non-null    int64  
 8   船票信息    891 non-null    object 
 9   票价      891 non-null    float64
 10  客舱      204 non-null    object 
 11  登船港口    889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB

1.6.3 任务三:利用Pandas进行算术计算,计算两个DataFrame数据相加结果

# 具体请看《利用Python进行数据分析》第五章 算术运算与数据对齐 部分

#自己构建两个都为数字的DataFrame数据

"""
我们举了一个例子:
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
                     columns=['a', 'b', 'c'],
                     index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
                     columns=['a', 'e', 'c'],
                     index=['first', 'one', 'two', 'second'])
frame1_a
"""
#代码
frame1_a = pd.DataFrame(np.arange(9.).reshape(3, 3),
                     columns=['a', 'b', 'c'],
                     index=['one', 'two', 'three'])
frame1_b = pd.DataFrame(np.arange(12.).reshape(4, 3),
                     columns=['a', 'e', 'c'],
                     index=['first', 'one', 'two', 'second'])
display(frame1_a)
display(frame1_b)
abc
one0.01.02.0
two3.04.05.0
three6.07.08.0
aec
first0.01.02.0
one3.04.05.0
two6.07.08.0
second9.010.011.0
frame1_a+frame1_b
abce
firstNaNNaNNaNNaN
one3.0NaN7.0NaN
secondNaNNaNNaNNaN
threeNaNNaNNaNNaN
two9.0NaN13.0NaN

将frame_a和frame_b进行相加

#代码

【提醒】两个DataFrame相加后,会返回一个新的DataFrame,对应的行和列的值会相加,没有对应的会变成空值NaN。

当然,DataFrame还有很多算术运算,如减法,除法等,有兴趣的同学可以看《利用Python进行数据分析》第五章 算术运算与数据对齐 部分,多在网络上查找相关学习资料。

1.6.4 任务四:通过泰坦尼克号数据如何计算出在船上最大的家族有多少人?

'''
还是用之前导入的train_chinese.csv如果我们想看看在船上,最大的家族有多少人(‘兄弟姐妹个数’+‘父母子女个数’),我们该怎么做呢?
'''
task4=pd.read_csv('train_chinese.csv')
task4.head()
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
#代码
task4.columns
Index(['乘客ID', '是否幸存', '仓位等级', '姓名', '性别', '年龄', '兄弟姐妹个数', '父母子女个数', '船票信息',
       '票价', '客舱', '登船港口'],
      dtype='object')
temp=task4.兄弟姐妹个数+task4.父母子女个数
temp.name='col1'
temp.to_frame().sort_values('col1',ascending=False)#.rename(columns='col1')##.columns#.sort_values()
col1
18010
84610
79210
20110
15910
......
4990
1940
4970
1950
8900

891 rows × 1 columns

最大的家族有10个人

【提醒】我们只需找出”兄弟姐妹个数“和”父母子女个数“之和最大的数,当然你还可以想出很多方法和思考角度,欢迎你来说出你的看法。

多做几个数据的相加,看看你能分析出什么?

#代码
task4.head()
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
#写下你的其他分析






1.6.5 任务五:学会使用Pandas describe()函数查看数据基本统计信息

#(1) 关键知识点示例做一遍(简单数据)
# 具体请看《利用Python进行数据分析》第五章 汇总和计算描述统计 部分

#自己构建一个有数字有空值的DataFrame数据


"""
我们举了一个例子:
frame2 = pd.DataFrame([[1.4, np.nan], 
                       [7.1, -4.5],
                       [np.nan, np.nan], 
                       [0.75, -1.3]
                      ], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2

"""
#代码
frame2 = pd.DataFrame([[1.4, np.nan], 
                       [7.1, -4.5],
                       [np.nan, np.nan], 
                       [0.75, -1.3]
                      ], index=['a', 'b', 'c', 'd'], columns=['one', 'two'])
frame2
onetwo
a1.40NaN
b7.10-4.5
cNaNNaN
d0.75-1.3

调用 describe 函数,观察frame2的数据基本信息

#代码
frame2.describe()
onetwo
count3.0000002.000000
mean3.083333-2.900000
std3.4936852.262742
min0.750000-4.500000
25%1.075000-3.700000
50%1.400000-2.900000
75%4.250000-2.100000
max7.100000-1.300000

1.6.6 任务六:分别看看泰坦尼克号数据集中 票价、父母子女 这列数据的基本统计数据,你能发现什么?

task4.head()
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
1211Cumings, Mrs. John Bradley (Florence Briggs Th...female38.010PC 1759971.2833C85C
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
'''
看看泰坦尼克号数据集中 票价 这列数据的基本统计数据
'''
task4.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
 #   Column  Non-Null Count  Dtype  
---  ------  --------------  -----  
 0   乘客ID    891 non-null    int64  
 1   是否幸存    891 non-null    int64  
 2   仓位等级    891 non-null    int64  
 3   姓名      891 non-null    object 
 4   性别      891 non-null    object 
 5   年龄      714 non-null    float64
 6   兄弟姐妹个数  891 non-null    int64  
 7   父母子女个数  891 non-null    int64  
 8   船票信息    891 non-null    object 
 9   票价      891 non-null    float64
 10  客舱      204 non-null    object 
 11  登船港口    889 non-null    object 
dtypes: float64(2), int64(5), object(5)
memory usage: 83.7+ KB
#代码
task4.describe()
乘客ID是否幸存仓位等级年龄兄弟姐妹个数父母子女个数票价
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200

一共891个数据,对于票价来说跨度挺大的从不花钱到512.3292元不等,大部分的票价还是主要集中在几十块钱的范畴之内

【思考】从上面数据我们可以看出,试试在下面写出你的看法。然后看看我们给出的答案。

当然,答案只是我的想法,你还可以有更多想法,欢迎写在你的学习笔记中。

多做几个组数据的统计,看看你能分析出什么?

# 写下你的其他分析
task4.describe(percentiles=[.05, .25, .75, .95])
乘客ID是否幸存仓位等级年龄兄弟姐妹个数父母子女个数票价
count891.000000891.000000891.000000714.000000891.000000891.000000891.000000
mean446.0000000.3838382.30864229.6991180.5230080.38159432.204208
std257.3538420.4865920.83607114.5264971.1027430.80605749.693429
min1.0000000.0000001.0000000.4200000.0000000.0000000.000000
5%45.5000000.0000001.0000004.0000000.0000000.0000007.225000
25%223.5000000.0000002.00000020.1250000.0000000.0000007.910400
50%446.0000000.0000003.00000028.0000000.0000000.00000014.454200
75%668.5000001.0000003.00000038.0000001.0000000.00000031.000000
95%846.5000001.0000003.00000056.0000003.0000002.000000112.079150
max891.0000001.0000003.00000080.0000008.0000006.000000512.329200
task4.客舱.describe()
count             204
unique            147
top       C23 C25 C27
freq                4
Name: 客舱, dtype: object
task4[task4.客舱=='C23 C25 C27']
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
272801Fortune, Mr. Charles Alexandermale19.03219950263.0C23 C25 C27S
888911Fortune, Miss. Mabel Helenfemale23.03219950263.0C23 C25 C27S
34134211Fortune, Miss. Alice Elizabethfemale24.03219950263.0C23 C25 C27S
43843901Fortune, Mr. Markmale64.01419950263.0C23 C25 C27S

感觉这里在同一个客舱,并且兄弟姐妹个数啥的对的上的很大概率就是一家人,可以考虑在这个基础上构建统计特征

task4.登船港口.describe()
count     889
unique      3
top         S
freq      644
Name: 登船港口, dtype: object
task4[task4.登船港口=='S']
乘客ID是否幸存仓位等级姓名性别年龄兄弟姐妹个数父母子女个数船票信息票价客舱登船港口
0103Braund, Mr. Owen Harrismale22.010A/5 211717.2500NaNS
2313Heikkinen, Miss. Lainafemale26.000STON/O2. 31012827.9250NaNS
3411Futrelle, Mrs. Jacques Heath (Lily May Peel)female35.01011380353.1000C123S
4503Allen, Mr. William Henrymale35.0003734508.0500NaNS
6701McCarthy, Mr. Timothy Jmale54.0001746351.8625E46S
.......................................
88388402Banfield, Mr. Frederick Jamesmale28.000C.A./SOTON 3406810.5000NaNS
88488503Sutehall, Mr. Henry Jrmale25.000SOTON/OQ 3920767.0500NaNS
88688702Montvila, Rev. Juozasmale27.00021153613.0000NaNS
88788811Graham, Miss. Margaret Edithfemale19.00011205330.0000B42S
88888903Johnston, Miss. Catherine Helen "Carrie"femaleNaN12W./C. 660723.4500NaNS

644 rows × 12 columns

【思考】有更多想法,欢迎写在你的学习笔记中。

【总结】本节中我们通过Pandas的一些内置函数对数据进行了初步统计查看,这个过程最重要的不是大家得掌握这些函数,而是看懂从这些函数出来的数据,构建自己的数据分析思维,这也是第一章最重要的点,希望大家学完第一章能对数据有个基本认识,了解自己在做什么,为什么这么做,后面的章节我们将开始对数据进行清洗,进一步分析。

  • 0
    点赞
  • 0
    收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
©️2022 CSDN 皮肤主题:点我我会动 设计师:我叫白小胖 返回首页
评论

打赏作者

韩绘锦

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值