经典卷积神经网络之DenseNet

DenseNet在ResNet基础上增强,实现前后层密集连接,通过通道堆叠而非元素级相加实现残差连接。网络结构包含DenseBlock和Transition,前者用于残差连接,后者用于缩小特征图。引入瓶颈结构和压缩系数降低计算复杂度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

        DenseNet是在ResNet的基础上进行的增强,两者的主要区别在于:
                1、DenseNet是让前面所有层与后面层实现密集连接;
                2、DenseNet实现残差连接时,是通过在通道数上进行堆叠,而不是像ResNet那样实现元素级相加。
        下面是DenseNet的网络结构:
在这里插入图片描述
        我们可以看到DenseNet实现了一种更为激进的密集连接机制,也就是后面的每一层都会接受前面所有层作为输入。DenseNet的网络结构由两个部分所组成:DenseBlock+Transition。其中DenseBlock主要实现的是残差连接,Transition主要实现的是降低特征图的大小。因为DenseBlock中实现的是维度上的拼接,因此要求特征图大小必须一致,只能通过Transition来实现缩小特征图。
在这里插入图片描述
        由于DenseNet采用的是密集连接,导致后面的层会得到非常多的输入,从而导致计算难度增加,因此可以在DenseBlock中采用瓶颈结构来减少计算量,主要就是通过 1 × 1 1\times1 1×1的卷积来降低特征图的维度,这种结构叫做DenseNet-B。
        其中Transition的结构为: B N + R e l u + 1 ∗ 1 C o n v + 2 ∗ 2 A v g P o o l i n g BN+Relu+1*1Conv+2*2AvgPooling BN+Relu+11Conv+22AvgPooling,这种结构叫做DenseNet-C
        使用了瓶颈结构的DenseBlock以及压缩系数小于1的Transition结构,这样的结构叫做DenseNet-BC

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值