
机器学习算法汇总:聚类算法
1、原型聚类1.1 K-means聚类算法 核心思想:在所有的训练样本当中,随机的选择K个样本作为初始化的聚类中心,之后计算其他样本到这K个聚类中心的距离,根据距离的远近分成K个簇,离哪一个聚类中心近就属于哪一类,由此就得到了K个簇。之后计算K个簇的中心点,如果K个簇的中心点都不发生更新,那么聚类结束。如果有聚类中心发生了更新,那么就由新的聚类中心替代旧的聚类中心,然后重新计算距离,不断迭代,直到聚类中心不再发生改变为止1.2 LVQ学习向量量化 核心思想:首先训...







